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Abstract 

The specific heat in its molar form or mass form is a significant thermal property in the study of the thermal capac‑
ity of the described system. There are two basic methods for the determination of the molar specific heat capacity, 
one of them is the experimental procedure and the other is the theoretical procedure. The present study deals with 
finding a formula of the molar specific heat capacity using the theory of the integral equations for Morse interaction 
which is a very important potential for the study of the general oscillations in the quantum mechanics. We use the 
approximation (Mean‑Spherical) for finding the total energy of the compositions described by Morse interaction. We 
find two formulas of the heat capacity, one at a constant pressure and the other at a constant volume. We conclude 
that the Morse molar specific heat is temperature dependent via the inverse square low with respect to temperature. 
Besides, we find that the Morse molar specific heat is proportional to the square of the Morse interaction well depth. 
Also, we find that the Morse molar specific heat depends on the particles’ diameter, the bond distance of Morse inter‑
action, the width parameter of Morse interaction, and the volumetric density of the system. We apply the formula of 
the specific heat for finding the specific heat of the vibrational part for two dimer which are the lithium and caesium 
dimers and for the hydrogen fluoride, hydrogen chloride, nitrogen, and hydrogen molecules.
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Introduction
One of the most significant thermal properties is the 
molar specific-heat, which is considered the main prop-
erties in the calorimeters measurements. The latter 
measurements is the basic experimental procedures for 
finding the values of the molar specific-heat for a specific 
system, and also, the molar specific-heat capacity can be 
determined through a theoretical procedures derived 
from the principles of the thermodynamics or derived 
from the principles of the statistical mechanics which 
we focus on. We employ the theory of the closed integral 
equations of the statistical-mechanics for finding a for-
mula of the full energy of a system described by a Morse 

interaction and from this formula, we find a formula for 
the molar specific-heat capacity of the Morse interaction. 
The volume-heat capacity is found from the equation:

The right-side of the previous equation represents 
the first derivative of the energy with respect to the 
absolute temperature. We use the previous main equa-
tion for finding the Molar specific-heat for the Morse 
potential which is an important potential for describing 
the vibrational cases, especially, in quantum mechanics 
[1]. In present work, we employ the integral equations 
theory solutions for the low density systems for deriving 
an equation of the molar specific-heat capacity for the 
Morse interaction where the theory of integral equations 
has multiple applications in lots of properties of the 

(1)CV (T ) = ET

Open Access

BMC Chemistry

*Correspondence:  mhdm‑ra@scs‑net.org; mn41@live.com
Faculty of Sciences, Damascus University, Damascus, Syrian Arab Republic

http://orcid.org/0000-0003-0984-2098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13065-022-00811-3&domain=pdf


Page 2 of 6Al‑Raeei  BMC Chemistry           (2022) 16:22 

physical systems. For instance, the theory was applied 
for discussing: some polymeric systems with experimen-
tal data [2], some diatomic molecules [3], the nematic 
case [4], some electrical properties in the liquids [5], the 
hard sphere as an analytical study [6], deriving equa-
tions of state for a specific type of dispersion [7], multi-
atomic systems of the fluids [8], the structure-factor of 
a charged system [9]. In this study, we apply the mean-
spherical-approximation for deriving a specific heat 
formula of Morse potential which can be derived in mul-
tiple form such as:

where Κ0 represents the energy (equilibrium) of the 
interaction potential, a is the width of well parameter 
and r0 is the equilibrium bond distance. The Morse 
potential has multiple applications in lots of chemi-
cal physics subjects, for instance: the discussing of the 
thermal properties of a specific system such as the dia-
mond class materials and finding the constants of the 
vibrational force and the elastic properties [10–12], the 
discussing of the correlations in alloys phases [13], the 
discussing of the spectral analysis [14], in the study of 
some quantum effects [15, 16], discussing the energy 
vibrational states [17, 18], discussing the alpha decay 
[19], the study of the structures with other potentials 
[20–22], the study of the some dimers where this poten-
tial has wide applications [22, 23]. In the section-2 of this 
article, we illustrate the method of deriving of the spe-
cific heat equation, and in the section-3, we discussed 
some aspects of the equation which we derive in addi-
tion to the applications of it. While in the last section of 
the article, we inserted some conclusions points.

The heat volumetric capacity for Morse potential
One of the most significant equations in the integral 
equation theory is the Ornstein_Zernike (O_Z) equation 
which describes the correlation between the particles in 
the system as direct correlation and indirect correlation 
and this equation is given as follows:

(2)
UMorse(r) = K0[exp (2a(r0 − r)− 2 exp (a(r0 − r)))]

(3)ht(r) ≡ c∗∗(r)+ c∗(r)

where r is the distance of the particles, n is number of the 
density, c*(r) is the correlation function-direct while ht(r) 
is the total correlation function and c**(r) is the correla-
tion function-indirect which is:

As we see from the two equations-3 and 4, the solu-
tions of the Ornstein_Zernike equation can be found if 
we employ another equation which can be resulted from 
many approximations formulas included in the simple 
fluids theory such as the mean spherical approximation 
MSA and other approximations. In this work, we use 
MS-approximation for deriving the molar specific-heat 
capacity of the Morse potential. We start from the gen-
eral relationship of the full energy:

N represent a number of particles in the described sys-
tem and the constant in the last term of the equation is 
Boltzmann constant. Now, if we use the MS-approxima-
tion and the formula of the Morse potential in the full 
energy formula, we find:

where:

Or in another form:
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Or in simpler form:

where:

(12)
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And we used the following reduced Morse interaction 
parameters:

The integral by partition method can be applied to the 
integrals in the four Eqs. (13–16) and using the reduced 
parameters we find that the full energy of the system 
written as follows:

If we apply the first equation in the work on the equa-
tion-20, we find that the heat volumetric capacity is given 
as:

Results and discussion
The Morse and the kinetic parts of the specific heat
The formula (21) is the main relationship which we found 
in the present work which represent the heat volumetric 
capacity. First, we can find the heat capacity at constant 
pressure from the relationship which relates with the 
heat volumetric capacity as follows:

Which gives us:
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where χ(Τ) is the thermal-compressibility, while α is the 
thermal expansion coefficient of the described system. 
However, we have two formulas of the heat capacity 
(pressure and volume), the two are semi-equal for the 
compositions which had a very small value of the thermal 
expansion parameter, for instance, soft materials.

Besides, we find the molar formalism of the volumetric 
heat capacity as follows:

Which represents the specific heat for a one mole of the 
described composition. As we see from the equation-24, 
the molar specific heat can be written as:

With:

where the first part of the formula (25) represents the 
kinetic molar specific heat (equation-26) and this part is 
independent of the absolute temperature. Besides, the sec-
ond part represents the molar specific heat of the Morse 
interaction (equation-27), and as we see, the Morse part is 
depends on the absolute temperature and this part is pro-
portional to inverse of the square of the absolute tempera-
ture which means that the Morse part is more effective in 
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low temperature range. In addition, we see that the Morse 
part of the molar specific heat is depends on the well depth 
of Morse potential and is proportional to the square of the 
well depth. Also, the Morse part of the Molar specific heat 
depends on the diameter of the particles composing the 
described system, and the parameter which determine the 
width of the Morse potential, and the bond distance, and 
the volumetric density of the system.

Applications of the Morse specific heat formula
We use the formula of the Morse specific heat which we 
derived for some application where we start from the 
hydrogen fluoride (HF) where we calculated the spe-
cific heat at the room temperature and we illustrated the 
result of this application in Table  1 which contains the 
molar mass of the hydrogen fluoride molecule, the den-
sity (volume) of the hydrogen fluoride, and the specific 
heat of the hydrogen fluoride molecule.

Besides, we use the formula for finding the specific heat 
of the hydrogen chloride (HCl) at the temperature and 
we illustrated the result in the Table 2 which contains the 
molar mass of the hydrogen chloride molecule, the den-
sity (volume) of the hydrogen chloride, and the specific 
heat of the hydrogen chloride molecule.

The two previous applications of the formula which we 
derived are about the diatomic and linear molecules and 

Table 1 The specific heat of the hydroen fluoride at the room 
temperature

t(CO) M (g/mol) ρ (g/cc) CV (J/gK)

25 20.0100 0.00115 0.6230

Table 2 The specific heat of the hydrogen chloride at the room 
temperature.

t(CO) M (g/mol) ρ(g/cc) CV
M(J/gK)

25 36.46 0.00149 0.3419

Table 3 The specific heat of the caesium dimer at the room 
temperature.

t(CO) M (g/mol) CV
M(J/gK)× 10

−23

25 265.8109 9.2434

Table 4 The specific heat of the lithium dimer at the room 
temperature.

t(CO) M (g/mol) CV
M(J/gK)× 10

−23

25 13.8800 3.4208
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are composed of two type of atoms, in addition, we use 
the formula of the specific heat of the Morse potential 
part specific heat for another part of the molecules which 
is Cs2 [23] (Caesium dimer) which is composed of one 
type of atoms. We calculated the Morse part specific heat 
for this dimer and the result of this calculation contained 
in Table 3 which includes the molar mass and the specific 
heat of this dimer.

The result of the specific heat of the caesium dimer can 
be compared of the value resulted from the study [23] 
where we see that the two vibrational part of the specific 
heat are near to each other. Also, we use the formula of 
the specific heat of Morse potential for the lithium dimer 
for finding the vibrational part of the specific heat of this 
dimer at the room temperature and we illustrated the 
result of this calculation in Table  4 which includes the 
molar mass and the specific heat of this dimer.

Finally, we use the formula of the specific heat for 
finding the specific heat at the room temperature of the 
hydrogen [25] and nitrogen [24] molecules.

As we see from the last table (Table  5), the specific 
heat of the hydrogen molecule and nitrogen molecule at 
the room temperature have the same rank of the values 
found in the literatures.

The ratio γ
Additional significant property of the material which 
is the ratio γ can be found from the formula which we 
derived in this work where this property represents the 
ratio between the heat capacity at constant V and at con-
stant P and defined as:

which becomes given by the following formula using the 
two equations-21 and 23:

As we see from the ratio γ of the Morse potential the 
ratio depends on the Morse parameters and absolute 
temperature of the system in addition to the Bulk modu-
lus of the system at this temperature.

(28)γ =
Cp(T )

CV (T )

(29)

γ = 1+
Vα2χ(T )T











3kBN

2
+

2nπK2
0N

kBT
2

(2 exp (2a(r0 − d)))

�

d2

a
+

d

a2
+

1

2a3

�

+
exp (4a(r0 − d))

4

�

d2

a
+

d

2a2
+

1

8a3

�

−
4

3
exp (3a(r0 − d))

�

d2

a
+

2d

3a2
+

2

9a3

�











Conclusions
We derived a formula of the Morse potential specific heat 
using the theory of the integral equations. We employed 
the mean-spherical-approximation for that purpose. 
First, we found a formula for the total energy of the com-
position described with Morse interaction, and based 
on the energy formula, we derived the required formula 
of the molar specific heat for the Morse interaction. We 
derived two formulas of the heat capacity for the Morse 
interaction, one for the constant pressure and the other 
for the constant volume.

We found that, the molar specific heat capacity of the 
Morse potential is depends on the absolute temperature 
of the systems via the inverse-square low of the absolute 
temperature. Also, we found that the specific molar heat 
of the Morse interaction is function to the particles’ diam-
eter, the bond distance of the Morse interaction, the width 
of the well parameter, the volumetric density of the sys-
tem, and the depth of the Morse well. We found that the 
Morse molar specific heat is proportional to the square of 
the depth well of the Morse interaction. We applied the 
formula for six different molecules which are the lithium 
and caesium dimers, the hydrogen fluoride, hydrogen 
chloride, nitrogen, and hydrogen molecules and we found 
that the values are near the values in other literatures.

The derived formula in the present work is applied 
for finding the specific heat capacity for the oscilla-
tions part as a general case which is represented via the 

Morse potential, for instance, the diatomic molecules as 
the hydrogen chloride molecule and hydrogen fluoride 
molecule.

Table 5 The specific heat of the hydrogen and nitrogen at the 
room temperature.

t (CO) M (g/mol) ρ (g/cc) CV
M (J/gK)

Hydrogen 25 2.0160 0.0009 6.1834

Nitrogen 25 28.0140 0.0013 0.4450
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