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Rapid four‑component synthesis 
of dihydropyrano[2,3‑c]pyrazoles using 
nano‑eggshell/Ti(IV) as a highly compatible 
natural based catalyst
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Abstract 

Nano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of 
dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier 
Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive 
X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the pres-
ence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and 
hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild 
condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic 
solvents.
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Introduction
One key-step toward green chemistry concerns on chem-
ical transformations under solvent-free conditions [1, 2]. 
Solvent free conditions often have lead to decrease reac-
tion time, increase yields and easy work-up [3, 4]. Com-
bining this condition with multicomponent reactions 
(MCRs) disclosed a particular opportunity for architect-
ing of heterocyclic molecules in short time [5, 6]. MCRs 
play an essential role in combinatorial chemistry due to 
one-pot synthesis of various complex molecules, atom 
economy and effectiveness compared with single step 
reaction [7, 8]. For economic and environmental rea-
sons, solvent free reactions were demonstrated to be an 
efficient method for the synthesis of chemical product in 

a clean and safe conditions [9–11]. Dihdropyrano[2,3-c]
pyrazoles (DHPPs) are important class of heterocycle 
componds because of their wide applications in medici-
nal and pharmaceutical chemistry [12]. Many of these 
properties are known for their anti-microbial [13], anti-
inflammatory [14], anti-cancer [15], bactericidal [16], 
molluscicida [17], and kinase inhibitory [18] activities. 
In the first report, DHPP was synthesized by a reaction 
between 3-methyl-1-phenylpyrazolin-5-one and tetracy-
anoethylene [19]. Recently, DHPPs have been synthesized 
via the reaction of hydrazine hydrate, ethyl acetoacetate, 
malononitrile, and aldehydes. Some catalysts have been 
used to develop the above mentioned reaction such as 
γ-alumina [20], glycine [21], ionic liquids [22], l-proline 
[23], imidazole [24], I2 [25], and trietheylamine [26]. 
In the recent years, heterogeneous catalysts, due to the 
high capability for recycling and reutility, have surpassed 
homogeneous catalytic systems, despite their benefits 
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such as high activity and selectivity [27]. Nowadays, 
nanocatalysts have been subjected of immense interest, 
because of their potential applications in different fields. 
They have several important advantages as heterogene-
ous catalysts including high catalytic activity, readily 
available, simple separation, high degree of chemical sta-
bility, and reusability [28–31].

The eggshell is represented 11% of the total weight of 
the egg and composed predominantly of calcium car-
bonate (94%), organic materials (4%), calcium phosphate 
(1%), and magnesium carbonate (1%) [32].

In continuation of our previous works in using solid 
acid catalysts [33–38], herein, we reporte an efficient 
one-pot four-component reaction protocol for the syn-
thesis of DHPPs in the presence of nano-eggshell/Ti(IV) 
(NEST) as a highly effective nanocatalyst in good to 
excellent yields under mild conditions (Scheme 1).

Results and discussion
Characterization of the nanocatalyst
NEST was prepared simply via addition of TiCl4 to a sus-
pension of eggshell nanoparticles in CH2Cl2 (Scheme 2). 
The obtained catalyst was characterized using Fou-
rier Transform Infrared (FT-IR) spectroscopy, X-ray 
Diffraction (XRD), Field Emission Scanning Electron 
Microscopy (FESEM), Energy-Dispersive X-ray (EDX) 
spectroscopy, and Thermo Gravimetric Analysis (TGA).

The FT-IR spectra of CaCO3 [39, 40], nano-eggshell, 
and NEST are shown in Fig. 1. Distinct absorption bands 
can be observed at 711, 871, and 1391 cm−1 in all com-
pared spectra show the presence of high percentage 

of CaCO3 in eggshell and NEST. For NEST (Fig.  1c), 
in addition to the eggshell absorption bands, stretch-
ing vibrations of C–O–Ti group at 780  cm−1 (accord-
ing to previously reported FT-IR about Ti(OBut)4 [41, 
42]) was appeared, indicated that TiCl4 have functional-
ized on nano-eggshell successfully. The absorbed band 
at 1613  cm−1 is associated to the bending vibration of 
H–O–H which have shown the absorbed water on cata-
lyst [43].

Figure  2 shows the XRD patterns of NEST, TiO2 and 
CaCO3 in the range of 10–70° (2θ). NEST (Fig. 2c), has 
shown diffraction peaks at 2θ = 23, 29, 37, 40, 43, 47, 
48, 56, 57, 61 and 62°, which are quite matched with the 
structure of pure CaCO3. By comparison with Fig. 2a–c, 
we can conclude the absence of TiO2 and the presence of 
CaCO3 in catalyst.

Surface morphology of nano-eggshell and the synthe-
sized NEST was observed using FESEM analysis (Fig. 3a, 
b). The FESEM image of NEST (Fig.  3b) indicates that 
morphology of the nano particles has a quasi-spherical 
shape. The average size of NEST was estimated about 
40 nm.

Scheme 1.  Synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by 
nano-eggshell/Ti(IV)

Scheme 2.  Preparation of NEST

Fig. 1  FT-IR spectra of a CaCO3, b nano-eggshell, and c NEST

Fig. 2  The XRD patterns of a CaCO3, b TiO2, and c NEST
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The existence of expected elements in the structure of 
the NEST was approved by EDX analysis (Fig.  4). The 
EDX results have clearly confirmed the presence of C, O, 
Cl, Ca and Ti in the catalyst. According to this data, the 
weight percentages of the above-mentioned elements are 
14.48, 43.13, 7.16, 29.30 and 5.94, respectively.

For thermal stability investigation of the catalyst, TGA-
DTA analysis was done in a range of 45–813 °C (Fig. 5). 
The first decrease of weight was assigned to the catalyst 
moisture removal (endothermic effect at 70–130  °C, 4% 
weight loss). The second weight loss (16%) was occurred 
at 130–600  °C with an exothermic process. As the tem-
perature increased to 800  °C, the main mass loss could 

be associated with the decomposition of eggshell to CO2 
and CaO.

To optimize the conditions for the synthesis of the 
DHPPs in the presence of NEST, the condensation of 
4-chlorobenzaldehyde, malononitrile, ethyl acetoac-
etate, and hydrazine hydrate in the molar ratio 1:1:1:2 
was done under various conditions (Table  1). Accord-
ing to the obtained data, the best yield of 6-amino-4-
(4-chlorophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]
pyrazole-5-carbonitrile (5h) was achieved using 0.06 g of 
NEST at room temperature under solvent-free condition 
(Table 1, entry 12).

After optimization of the reaction conditions for prep-
aration of DHPPs, various aromatic and heteroaromatic 
aldehydes were used for expansion of this protocol. The 
reactions were proceeded for all used aldehydes (Table 2). 
The desired products were isolated in good to excellent 
yields in short reaction times without any byproducts.

A proposed mechanism for the synthesis of DHPPs 
catalyzed by NEST was shown in Scheme  3. Initially, 
the condensation of hydrazine hydrate (4) and ethyl 

Fig. 3  FESEM image of a nano-eggshell, b NEST

Fig. 4  EDS analysis of NEST

Fig. 5  TGA and DTA patterns of NEST
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acetoacetate (1) was formed intermediate (6) in the pres-
ence of NEST as a Lewis acid. The Knoevenagel conden-
sation of malononitrile (3) with aromatic aldehyde (1) 
was produced the intermediate (8). Michael addition 
reaction of the intermediate (8) and (7) were generated 
intermediate (10), followed by intramolecular cyclization 
and tautomerization have given the DHPPs (5).

In order to investigation of the catalyst reusability, 
after the reaction completion, the NEST was isolated by 

adding acetone to reaction mixture and then filtered. The 
recovered catalyst was washed with dichloromethane 
and dried at room temperature. It was observed that the 
recovered nanocatalyst could be used at least four times 
without significant loss of its catalytic activity (Fig. 6).

The structure of recovered catalyst was studied by 
FT-IR (Fig.  7) and TGA-DTA (Fig.  8). The comparison 
between fresh and recoverable catalysts have shown no 
differences.

Finally, the catalytic performance of NEST was com-
pared with that of other previously reported catalysts 
for the synthesis of 5a (Table  3). From the viewpoints 
of green chemistry and simplicity, our method is a good 
one.

Conclusion
In this work, we have synthesized the NEST and char-
acterized it as a novel heterogeneous natural nanocata-
lyst. This catalyst was used for the synthesis of DHPPs at 
room temperature under solvent free condition via con-
densation of hydrazine hydrate, ethyl acetoacetate, malo-
nonitrile, and aromatic aldehydes. This method includes 
some advantages such as the solvent-free condition, good 
to excellent yields, room temperature, short reaction 
time, easy work-up and reusability of the catalyst.

Experimental section
Chemicals and apparatus
All compounds were purchased from Merck, Aldrich and 
Fluka chemical companies. FT-IR spectra were run on a 
Bruker, Equinox 55 spectrometer. A Bruker (DRX-400 
Avance) NMR was used to record the 1H and 13C NMR 

Table 1  Preparation of  5  h in  the  presence of  NEST 
under various conditions

Reaction was performed with ethyl acetoacetate (1 mmol), 
4-chlorobenzaldehyde (1 mmol), malononitrile (1 mmol), and hydrazine hydrate 
(2 mmol)
a  Isolated yield

Entry Conditions Time (min) Yielda (%)
Solvent/catalyst (g)/Temp. (°C)

1 H2O/NEST (0.06)/r.t 180 55

2 H2O/NEST (0.06)/Reflux 120 58

3 EtOH/NEST (0.06)/r.t 60 75

4 EtOH/NEST (0.06)/Reflux 60 80

5 H2O:EtOH (1:1)/NEST (0.06)/r.t 45 83

6 H2O:EtOH (1:1)/NEST (0.06)/Reflux 30 85

7 –/NEST (0.06)/35 90 77

8 –/NEST (0.06)/60 150 70

9 –/–/r.t 30 25

10 –/NEST (0.02)/r.t 45 85

11 –/NEST (0.04)/r.t 20 90

12 –/NEST (0.06)/r.t 15 94

13 –/NEST (0.1)/r.t 20 89

Table 2  Synthesis of DHPPs 5(a–o) in the presence of NEST

a  Isolated yield

Entry Ar Product Time (min) Yielda (%) Mp (°C) Refs.

1 C6H5 5a 10 92 242–244 [44]

2 2-OCH3C6H4 5b 15 89 226–228 [45]

3 3-O2NC6H4 5c 10 90 210–211 [45]

4 4-H3CC6H44 5d 18 87 204–206 [46]

5 4-O2NC6H4 5e 9 93 239–242 [45]

6 3-BrC6H4 5f 15 94 223–224 [46]

7 4-BrC6H4 5g 12 96 178–180 [45]

8 4-ClC6H5 5 h 10 94 230–232 [44]

9 4-OHC6H4 5i 10 95 222–224 [46]

10 3,4-(OH)C6H3 5j 10 91 225–227 [47]

11 2,4-(Cl)C6H3 5k 20 90 223–225 [46]

12 3-OCH3 4-OH, C6H3 5l 15 92 234–236 [46]

13 4-FC6H4 5m 8 96 212–214 [45]

14 2-Furyl 5n 10 91 228–230 [48]

15 1-Naphthyl 5o 25 88 206–208 [20]
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spectra. The morphology of the particles was observed by 
FESEM under acceleration voltage of 120  kV. The XRD 
patterns were obtained on a Philips Xpert MPD diffrac-
tometer (Cu Ka, radiation, k¼ 0.154056  nm). EDS was 
obtained using a Phenom pro X instrument. TGA was 
conducted using STA 504 instrument.

Preparation of NEST
Firstly, the eggshell was heated in boiling water for 
30 min, dried in oven 150 °C and powdered. Then, 1 g of 

prepared nano-eggshell powder was stirred for 30 min in 
10 mL of dried CH2Cl2. Titanium tetrachloride (4.36 mL) 
was slowly added dropwise to the mixture. After stirring 
at room temperature for 30  min, the resulting product 
filtered and washed with dichloromethane three times. 
Finally, the obtained NEST was dried at room tempera-
ture for 3 h.

Scheme 3.  Proposed mechanism for the synthesis of DHPPs

Fig. 6  Reusability of NEST
Fig. 7  FT-IR spectrum of a fresh NEST, b recovered NEST
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General procedure for the synthesis of DHPPs
In a 100  mL round bottom flask, a mixture of aldehyde 
(1  mmol), malononitrile (1  mmol), hydrazine hydrate 
(2 mmol), ethyl acetoacetate (1 mmol) and NEST (0.06 g) 
was stirred at room temperature. Progress of the reac-
tion was monitored by TLC (n-hexane:EtOAc, 4:1). 
After completion of the reaction, the mixture was dis-
solved in acetone. Then, the catalyst was filtered off 
and the obtained solution was poured into cold water. 
The obtained solid product was filtered and purified 
by recrystallization from ethanol and water (4:1). The 
obtained NEST catalyst was then washed with EtOH, 
dried and reused directly for four times in other fresh 
reactions with negligible decreasing of the yields.

Spectroscopic data for some products
6​‑Am​ino​‑3‑​met​hyl​‑4‑​(3‑​nit​rop​hen​yl)​‑1,​4‑d​ihy​dro​pyr​ano​[2,​
3‑​c]​pyrazole‑5‑carbonitrile (Table 2, entry 3)
White solid. M.P. 210–211  °C FT-IR (ATR)/ῡ (cm−1): 
3484, 3231, 3120, 2190, 1645, 1597, 1519, 1491, 1410, 
1351, 733. 1H NMR (400  MHz, DMSO-d6)/δ (ppm): 
1.82 (s, 3H), 4.89 (s, 1H), 7.08 (s, 2H), 7.64–7.70 (m, 2H), 
8.04 (s, 1H), 8.13–8.15 (d, J = 8  Hz, 1H), 12.23 (s, 1H).; 

13C NMR (100 MHz, DMSO-d6)/δ ppm: 161.63, 155.17, 
148.36, 147.32, 136.38, 134.88, 130.47, 122.33, 121.01, 
97.15, 56.59, 36.11, 10.25.

6‑Amino‑3‑methyl‑4‑(4‑nitrophenyl)‑1,4‑dihydropyrano[2,
3‑c]pyrazole‑5‑carbonitrile (Table 2, entry 5)
White solid. M.P. 239–242  °C. FT-IR (ATR)/ῡ (cm−1): 
3475, 3227, 3106, 2195, 1646, 1592, 1513, 1399, 1348, 
1163, 1109, 810, 744; 1H NMR(400  MHz, Acetone-
d6)/δ ppm: 2 (s, 3H), 4.88 (s, 1H), 6.30 (br s, 2H), 7.55 
(d, J = 8  Hz, 2H), 8.23 (d, J = 8  Hz, 2H), 11.43 (s, 1H). 
13C NMR (100 MHz, DMSO-d6)/δ ppm: 161.62, 155.15, 
152.59, 146.85, 136.36, 132.19, 129.32, 124.38, 120.98, 
97.04, 56.37, 36.36, 10.22.

6‑Amino‑4‑(4‑hydroxyphenyl)‑3‑me‑
thyl‑1,4‑dihydropyrano[2,3‑c]pyrazole‑5‑carbonitrile 
(Table 2, entry 9)
White solid. M.P. 222–224  °C. FT-IR (ATR)/ῡ (cm−1): 
3372, 3304, 3127, 2173, 1645, 1594, 1510, 1489, 1441, 
1404, 1189, 1166, 1041, 809. 1H NMR (400  MHz, 
Acetone-d6)/δ(ppm): 1.74 (s, 3H), 4.44 (s, 1H), 6.65 
(dd, J = 7.5 Hz, J = 3.7 Hz, 2H), 6.76 (br s, 2H), 6.91 (dd, 
J = 7.5  Hz, J = 3.7  Hz, 2H), 9.27 (s, 1H), 12.02 (s, 1H).; 
13C NMR (100 MHz, DMSO-d6)/δ ppm: 161.10, 156.49, 
155.22, 135.98, 135.24, 128.92, 121.40, 115.58, 98.54, 
58.21, 35.95, 10.24.

6‑Amino‑4‑(2,4‑dichlorophenyl)‑3‑me‑
thyl‑1,4‑dihydropyrano[2,3‑c]pyrazole‑5‑carbonitrile 
(Table 2, entry 11)
Pale yellow solid. M.P. 223–225  °C. FT-IR (ATR)/ῡ 
(cm−1): 3482, 3243, 3115, 2186, 1638, 1587, 1491, 1408, 
1100, 1052, 866, 741.; 1H NMR (400  MHz, DMSO-
d6)/δ ppm: 1.85 (s, 3H), 5.13 (s, 1H), 7.07 (s, 2H), 7.29 
(d, J = 8 Hz, 1H), 7.47 (dd, J = 8.4 Hz, J = 2 Hz, 1H), 7.65 
(d, J = 2.4  Hz, 1H), 12.23 (s, 1H).; 13C NMR (100  MHz, 
DMSO-d6)/δ ppm: 161.30, 154.88, 140.07, 135.44, 132.81, 
132.10, 128.83, 128.02, 120.25, 96.32, 55.21, 33.07, 9.53.
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