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Abstract 

To improve the reliability of virtual screening for transforming growth factor-beta type 1 receptor (TβR1) inhibitors, 2 
docking methods and 11 scoring functions in Discovery Studio software were evaluated and validated in this study. 
LibDock and CDOCKER protocols were performed on a test set of 24 TβR1 protein–ligand complexes. Based on the 
root-mean-square deviation (RMSD) values (in Å) between the docking poses and co-crystal conformations, the 
CDOCKER protocol can be efficiently applied to obtain more accurate dockings in medium-size virtual screening 
experiments of TβR1, with a successful docking rate of 95%. A dataset including 281 known active and 8677 inactive 
ligands was used to determine the best scoring function. The receiver operating characteristic (ROC) curves were 
used to compare the performance of scoring functions in attributing best scores to active than inactive ligands. The 
results show that Ludi 1, PMF, Ludi 2, Ludi 3, PMF04, PLP1, PLP2, LigScore2, Jain and LigScore1 are better scoring func‑
tions than the random distribution model, with AUC of 0.864, 0.856, 0.842, 0.812, 0.776, 0.774, 0.769, 0.762, 0.697 and 
0.660, respectively. Based on the pairwise comparison of ROC curves, Ludi 1 and PMF were chosen as the best scoring 
functions for virtual screening of TβR1 inhibitors. Further enrichment factors (EF) analysis also supports PMF and Ludi 
1 as the top two scoring functions.
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Background
Due to the vast improvement of computing power and 
the rapid development of computational chemistry and 
biology, computer-aided drug design (CADD) technology 
has been successfully applied in drug discovery, accel-
erating the research process and reducing the associ-
ated costs and risks [1]. Virtual screening is a common 
CADD technology used for the identification of hit mol-
ecules from large-scale compound libraries, providing a 
highly efficient approach to discover new compounds in 

the early stage of drug development [2]. Virtual screening 
methods, including molecular docking [3], pharmaco-
phore model [4], and similarity searching [5], are widely 
used in drug research and development. With an increas-
ingly large number of target protein structures being 
resolved, the molecular docking-based virtual screening 
(DBVS), has become one of the most common virtual 
screening methods, having achieved a great success [6].

However, due to its low accuracy, DBVS suffers from 
constant criticism. This method involves two basic pro-
cesses: positioning ligands into a protein active site, scor-
ing and ranking docked ligands. Both steps are imperfect. 
In the last decade, several studies on docking and scoring 
methods demonstrated that most of the docking meth-
ods and scoring functions are sensitive to the receptor, 
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and conclusions on different receptors may be inconsist-
ent with each other [7–10]. Different docking programs 
may show different performances in the same target 
protein [8]. There is often a poor correlation between 
the scores given by scoring functions and experimental 
binding affinities. New forms of examination are neces-
sary to maximize the success rate of docking and scoring 
methods, to determine the best parameters for individual 
protein targets.

Transforming growth factor-β (TGFβ) signaling plays 
a key role in cell growth, migration, differentiation, epi-
thelial–mesenchymal transition (EMT), and extracellular 
matrix remodeling [11]. TGFβ is reported to be critical 
in the later stages of tumorigenesis by increasing immu-
nosuppressive Treg cells and facilitating EMT [12]. TGFβ 
type 1 receptor (TβR1) is a key member of the TGFβ 
signaling pathways, and its inhibition has the potential 
to enhance the immune response against tumors. Thus, 
TβR1 has attracted wide attention, as a potential drug 
target [13].

Different virtual screening models can be complemen-
tary in the search for new inhibitors. In our previous 
studies, several inhibitors were screened and designed 
by the pharmacophore model and structure–activity 
relationship study [14, 15]. In this study, we aimed to 
obtain new TβR1 inhibitors using DBVS. For that, we 
assessed different docking methods and scoring func-
tions for TβR1, before large-scale database screening. We 
conclude that the CDOCKER protocol with a success-
ful docking rate of 88% and the PMF and Ludi 1 scoring 
functions with high reliability may be efficiently applied 
in the virtual screening of new inhibitors of TβR1.

Materials and methods
Database preparation
The Protein Data Bank (PDB; http://www.rcsb.org) 
funded by the National Science Foundation, the National 
Institutes of Health, and the US Department of Energy 
is the single worldwide archive of 3D structural data of 
biological macromolecules, such as proteins, nucleic 
acids, and complex assemblies [16]. Up to now, 22 crystal 
structures of TβR1 with various small molecule inhibi-
tors have been reported in PDB, including 1RW8, 1PY5 
[17], 1VJY [18], 2WOU, 2WOT [19], 2X7O [20], 3GXL, 
3HMM [21], 3FAA [22], 3KCF [23], 3TZM [24], 4X2F, 
4X2G, 4X2J [25], 5E8W, 5E8Z [26], 5FRI [27], 5QIK, 
5QIL, 5QIM [28], 5USQ [29], and 6B8Y (Additional 
file 1: Table S1) [12]. Water molecules and co-crystallized 
ligands were deleted and then the receptor protein was 
subsequently prepared by the Prepare Protein protocol 
using the Discovery Studio 2017R2 software package 
(DS; https​://www.3ds.com/). The following tasks were 
performed: insertion of missing atoms in incomplete 

residues, modeling of missing loop regions, deleting of 
alternate conformations (disorder), standardizing of 
atom names, and protonating of titratable residues.

22 X-ray structures of TβR1 deposited in the Protein 
Data Bank (PDB) were analyzed using some parameters 
to select the most suitable TβR1 structure for next stud-
ies, such as information on the resolution and organisms 
of crystallographic structures, as well as the similar-
ity values and physicochemical properties of all ligands 
(Additional file  1: Table  S2). The overlay of the crystal 
structure (Additional file  1: Fig. S1) and comparing the 
amino acid sequence showed that the 22 crystal structure 
has a high consistency and a complete binding pocket. 
Due to the Induced Fit Theory, the TβR1 will changes its 
conformation on binding a ligand. Therefore, there are 
slight differences in the conformation of 22 co-crystal 
structures (Fig. 1).

The ligand in 6B8Y (resolution 1.65 Å) with the IC50 
value of 0.55 nM was the most active inhibitor of 22 mol-
ecules in co-crystal structures. Therefore, 6B8Y may be 
more representative of the active conformation of the 
target protein. 6B8Y was selected for the evaluation of 
scoring functions from up to 22 co-crystal structures.

The root-mean-square deviation (RMSD) value (in Å) 
between the best docking poses of ligands and the con-
formations in co-crystal structures was selected as the 
evaluation criterion to check the accuracy of docking 
program in the reproduction of the binding poses of 
ligands in crystal structures of TβR1-ligand complexes. 
Inhibitors in the above-mentioned crystal structures 
are shown in Fig. 1. The conformations of the inhibitors 
confirmed by experimental methods. Thus, 22 active 
conformations of inhibitors in the crystal structure were 

Fig. 1  Overlay of crystal structures between 4X2F (gold ribbon) and 
6B8Y (blue ribbon). The ligand in 6B8Y was shown with the purple 
stick model

http://www.rcsb.org
https://www.3ds.com/
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selected as the reference ligands. These 22 active confor-
mations were re-docked back to the active site of TβR1 
by molecular docking. In previous studies, RMSD values 
within 2.0 Å were acceptable for the molecular docking-
based virtual screening [30]. Thus, in this investigation, 
the docking results with RMSD ≤ 2.0 Å were considered 
successful, and the docking results with RMSD > 2.0  Å 
were considered to be failed.

Receiver operating characteristic (ROC) curves were 
used to distinguish between “active” and “inactive” sam-
ples based on the scores. For the evaluation and valida-
tion of the sensitivity (SE) and specificity (SP) of scoring 
functions, a test set covering active and inactive ligands 
was established by downloading 8958 ligands from the 
DUD-E database (http://dude.docki​ng.org/). Namely, 
this test set includes 281 known active ligands and 8677 
ligands assumed to be inactive (referred to as decoys). 
The decoy compounds have similar physicochemical 
properties but dissimilar 2D topology (Additional file 1: 
Table S3) [31]. The prepared active or decoy ligands were 
docked into the binding pocket of TβR1, respectively and 
the top-scoring pose of each ligand along with its dock-
ing score was used for further analysis.

Molecular docking and scoring functions
Two molecular docking methods, LibDock and 
CDOCKER in DS software, were performed in this study. 
LibDock is a docking program developed by Diller and 
Merz, which uses protein site features referred to as Hot-
Spots [32], while CDOCKER is a grid-based molecular 
docking method based on CHARMm [33]. Before molec-
ular docking, the ligands in the test set were prepared 
using the Prepare Ligands protocol to remove duplicates, 
generate 3D conformations, and remove compounds 
with undesirable properties. For LibDock, the parameter 
“Conformation Method” was set to “BEST”, “Max Hits to 
Save” was set to “1” and “Minimization Algorithm” was 
set to “Smart Minimizer”. All other parameters were set 
to default. For CDOCKER, “Top Hits” was set to “1”, 
“Pose Cluster Radius” was set to ‘0.5’, and others were set 
to default. Only one top docking pose for each molecule 
was reported and saved for further analysis. The RMSD 
values (in Å) between the best docking poses of ligands 
and the conformations in co-crystal structures were 
calculated.

The top docking pose for each molecule was re-scored 
using the Score Ligand Poses protocol in the DS software. 
The scoring functions, including CDOCKER Scores 
(CDOCK), LigScore1, LigScore2, PLP1, PLP2, Jain, PMF, 
PMF04, Ludi Energy Estimate 1 (Ludi 1), Ludi Energy 
Estimate 2 (Ludi 2), Ludi Energy Estimate 3 (Ludi 3), were 
used to calculate ligand binding in an active receptor site. 
The calculated scores were reported as positive values 

to ensure that higher scores indicated more favorable 
binding.

ROC curve analysis
All ligands in the test set (281 active and 8677 inactive) 
were docked into the binding pocket of TβR1 (PDB ID: 
6B8Y). The top docking pose for each ligand was re-
scored used the above-mentioned 11 scoring functions. 
Using a diagnostic trial approach, the SE and SP of each 
scoring function for distinguishing between “active” and 
“inactive” samples, were calculated. In the ROC curve, 
the SE is plotted against 100 − SP for every cut-off point 
of the variable (score calculated by scoring function). 
The SE is defined as the ratio of true positive (TP) to 
the sum of TP and false negative (FN): [TP/(TP + FN)]; 
and the SP is defined as the ratio of true negative (TN) 
to the sum of TN and false positive (FP): [TN/(TN + FP)] 
[14]. The reliability of the scoring function was estimated 
using the area under the curve (AUC), together with the 
Chi-square test. A statistically significant difference was 
defined when P < 0.05. Typically, a ROC curve has an 
AUC baseline of 0.5, which demonstrates an evenly dis-
tributed system. An AUC value closer to 1 indicates good 
selectivity, whereas a value close to 0.5 indicates random 
selection.

Enrichment factor analysis
Taking enrichment factor (EF) as the indicator, the per-
formance of the scoring function as a virtual screening 
tool applied to TβR1 was evaluated. EF is defined as:

where HitsX%sampled is the number of hit compounds at X% 
of the database, NX%

sampled is the number of compounds 
screened at X% of the database, Ntotal is the number of 
compounds in the database, and Hitstotal is the number of 
active compounds in the database. Among the top-rank 
screened database compounds, the enrichment ability of 
active compounds is the most noteworthy. Therefore, we 
mainly focus on the enrichment factor at 0.5%, 1%, and 
2% of the ranked database, which are defined as EF0.5%, 
EF1%, and EF2%.

Results and discussion
Assessment of docking methods
Properly docking the ligands to the active site is the most 
critical step in the virtual screening. The LibDock and 
CDOCKER docking programs were performed in this 
study. The results require evaluation to determine the 
best docking method for the TβR1 protein target and to 
maximize the probability of success. The performance of 

EF =

HitsX%sampled

N
X%
sampled

·

Ntotal

Hitstotal

http://dude.docking.org/
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the docking programs for predicting the binding mode 
between ligand and TβR1 was evaluated with a success 
rate. 22 known active conformations of TβR1 inhibitors 
were re-docked into the corresponding binding pockets. 
As virtual screening projects always involve thousands to 
tens of thousands of ligands, only the top-scoring pose 
of each ligand was considered as the possible active con-
formation. The RMSD values between the docked poses 
with the highest score and those in co-crystal structures 
are listed in Table 1.

Results demonstrate that the accuracy of the Lidock 
program (59%) is much lower than that of the CDOCKER 
program (95%). Thus, the CDOCKER program was cho-
sen as the docking programs in the subsequent study, 
based on its reliability.

Assessment of scoring functions
Scoring and ranking the docked ligands play an impor-
tant role in virtual screening. The best scoring function 
for TβR1 should be selected to maximize the chances of 

success. In this study, 281 known active and 8677 inac-
tive ligands were used to determine the best scoring 
functions before a larger-scale screening of unknown 
compounds. In this study, the ROC curves are used to 
compare the performance of scoring functions in attrib-
uting better scores to active than inactive ligands. The 
docking results showed that, among 8959 ligands, only 
one active molecule and 22 inactive molecules could not 
be docked into the active cavity. The best docking poses 
for each docked ligand were recalculated with 11 scor-
ing functions, respectively. Based on the information of 
known active and inactive ligands, the ROCs (Fig. 2) were 
drawn using statistical software, and relevant statistical 
parameters are listed in Table 2.

As a higher score indicates a more favorable binding, 
the result of the CDOCK is unreliable. The ROC curves 
of Ludi 1, PMF, Ludi 2, Ludi 3, PMF04, PLP1, PLP2, Lig-
Score2, Jain and LigScore1 all tend to the upper left cor-
ner, with AUCs of 0.864, 0.856, 0.842, 0.812, 0.776, 0.774, 
0.769,0.762, 0.697 and 0.660, respectively (P < 0.0001). All 
the AUCs of scoring function are significantly larger than 
those of random distribution (Reference line in Fig.  2, 
AUC = 0.5), which indicates that the prediction capacity 
of these 10 scoring functions is better than the random 
distribution model. The AUC of Ludi 1 is the largest, and 
the curve is closest to the upper left corner, indicating 
that Ludi 1 can efficiently distinguish active and inac-
tive molecules. Pairwise comparison of ROC curves 
shows a significant difference in AUCs between Ludi 1 
and other scoring functions (P < 0.0001), except for PMF 
(P = 0.6170). Given the high accuracy of Ludi 1 and PMF 
for TβR1, we strongly recommend Ludi 1 and PMF as 
scoring functions for virtual screening of new inhibitors 
of TβR1.

Large-scale bioactivity testing is an extremely expen-
sive process. Therefore, it is essential to minimize the 
number of virtual screening false positives, before a 
large database search of active molecules and their 
experimental validation. Therefore, achieving a high 
positive predictive value (PPV = TP/(TP + FP)) is 
mandatory. In general, large databases exhibit a low 
frequency of active ligands. This suggests that increas-
ing SP is more helpful to improve the PPV than alter-
ing SE. For example, in this study, active ligands 
accounted for 3% (280/8958) of the test set. Based on 
the results form Ludi1, with the increase in SP from 
80 to 90%, 95% and 99%, the PPV value increases from 
12% (222/1904) to 17% (171/1028), 22% (118/547) and 
28% (34/120), respectively. If PMF instead of Ludi 1 as 
a scoring function, the PPV value increases from 12% 
(219/1862) to 18% (166/948), 24% (136/569) and 43% 
(66/151), respectively. As illustrated in Fig. 2, the PMF 
ROC curve is above the Ludi1 ROC curve in the higher 

Table 1  RMSD values (in Å) between  the  best docking 
poses of  ligands and  the  conformations in  co-crystal 
structures for all retrieved actives ligands

Ligands were named with the PDB ID; MW, molecular weight; docking results 
with RMSD ≤ 2.0 Å are considered successful, and docking results with 
RMSD > 2.0 Å are considered to be failed

NO. Ligand MW RMSD values (Å)

LibDock CDOCKER

1 1RW8 293.338 0.2397 1.5416

2 1PY5 272.304 1.1255 1.1468

3 1VJY 287.319 0.2443 0.3263

4 2WOU 369.418 2.0171 0.3847

5 2WOT 458.509 0.5475 0.2087

6 2X7O 494.627 0.9240 0.6066

7 3GXL 352.392 0.3867 0.4265

8 3FAA 362.36 5.6841 1.5150

9 3HMM 313.356 0.2322 0.1976

10 3KCF 360.409 0.6144 0.2904

11 3TZM 390.435 4.9755 4.8933

12 4X2F 253.259 5.7255 0.4702

13 4X2G 253.259 5.2960 1.1824

14 4X2J 253.259 6.2834 0.3497

15 5E8W 466.531 0.7055 1.2770

16 5E8Z 420.464 8.5303 1.1120

17 5FRI 332.742 4.9761 0.3629

18 5QIK 365.361 0.9489 0.2173

19 5QIL 359.381 0.9670 0.2635

20 5QIM 359.381 6.9569 0.7050

21 5USQ 438.928 1.8278 1.9753

22 6B8Y 374.295 0.2779 0.2861

Success rate 59% 95%
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Fig. 2  ROC curves for the scoring functions
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SP region. Furthermore, for the same SP, the PMF ROC 
curve has higher SE and PPV. Therefore, the PMF scor-
ing function is suitable for this particular research 
objective.

To obtaining more novel molecular structures for 
drug design, higher SE must be considered in the virtual 
screening. When SE = 0.9 (255 active compounds were 
obtained), a total of 3772 compounds were obtained 
by PMF, while only 3597 compounds were screened 
by Ludi1, with fewer false positive ligands. As shown 
in Fig. 2, the Ludi 1 ROC curve is above the PMF ROC 
curve in the higher SE region in the upper right corner. 
For the same SE, the Ludi 1 ROC curve has a higher SP. 
Therefore, our results indicate that Ludi 1 scoring func-
tion has more advantages to this particular objective.

It can be seen from Table 3 that for TβR1, PMF all per-
forms best at EF0.5%, EF1%, and EF2% among all scoring 
functions, and Ludi 1 ranks the second. Besides, Jain is 
the worst among the above 10 scoring functions. In line 

with ROC curve analysis results, EF evaluation results 
also support PMF and Ludi 1 as the top two scoring 
functions.

Different virtual screening models can be complemen-
tary in the search for new inhibitors. In our previous 
studies, based on the crystal structure of TβR1-BMS22 
complex, a pharmacophore model was constructed [14]. 
In this study, EF0.5%, EF1%, and EF2% of the pharmacoph-
ore model A02 was also evaluated. It can be seen from 
Table 3 that EFs comparison indicates that the pharma-
cophore model A02 has very excellent performance at 
EF0.5%, only lower than PMF. Meanwhile, it ranks third at 
EF1%, slightly lower than PMF and Ludi 1. However, the 
low ranking of the pharmacophore model A02 at EF2% 
means that the screening results may not be ideal. EF 
evaluation results show that the pharmacophore model 
can also obtain excellent virtual screening results in the 
top-scoring area. Therefore, we recommend that molec-
ular docking and pharmacophore cross-validation can 
be performed to obtain more accurate virtual screening 
results.

In conclusion, our results show that PMF and Ludi1 
scoring functions have high reliability in the virtual 
screening of new inhibitors of TβR1. According to the 
goal of virtual screening, the scoring function can be flex-
ibly selected. To reduce the cost of experimental activity 
verification, the PMF scoring function should be chosen 
first. The Ludi 1 scoring function can be chosen first to 
obtain more novel inhibitors of TβR1.

Conclusion
Drug target interaction plays an important role in drug 
discovery based on target [34, 35], and molecular docking 
can well simulate the interaction between drug and tar-
get, which is widely used [36–38]. Molecular docking is 

Table 2  ROC curve results for the scoring functions

AUC​ area under the curve, 95% CI asymptotic 95% confidence interval, P significance level P (area = 0.5), SE sensitivity, SP specificity

Scoring function AUC​ Youden’s index

AUC​ 95% CI P Youden index J Score SE SP

Ludi 1 0.864 0.856 to 0.871 < 0.0001 0.5901 > 613 78.45 80.57

PMF 0.856 0.849 to 0.864 < 0.0001 0.5918 > 80.81 78.80 80.38

Ludi 2 0.842 0.834 to 0.849 < 0.0001 0.5465 > 498 85.51 69.14

Ludi 3 0.812 0.803 to 0.820 < 0.0001 0.5196 > 490 76.68 75.29

PMF04 0.776 0.767 to 0.784 < 0.0001 0.4587 > 43.26 67.49 78.38

PLP1 0.774 0.765 to 0.782 < 0.0001 0.4087 > 88.82 87.63 53.24

PLP2 0.769 0.760 to 0.777 < 0.0001 0.4008 > 89.49 65.02 75.07

LigScore2 0.762 0.753 to 0.771 < 0.0001 0.3719 > 6.22 60.07 77.12

Jain 0.697 0.687 to 0.706 < 0.0001 0.3283 > 4.13 84.45 48.38

LigScore1 0.660 0.650 to 0.669 < 0.0001 0.2380 > 3.86 55.83 67.97

Table 3  EFs of  the  scoring functions and  pharmacophore 
model A02

Scoring function EF0.5% EF1% EF2%

Ludi 1 11.93 9.58 8.42

PMF 19.38 15.61 12.60

Ludi 2 9.12 7.37 5.80

Ludi 3 7.18 5.68 5.12

PMF04 10.53 7.45 7.81

PLP1 8.61 7.10 4.79

PLP2 7.18 6.03 4.44

LigScore2 5.61 5.61 6.42

Jain 0.72 0.71 1.21

LigScore1 4.31 4.16 5.18

Pharmacophore model A02 12.92 8.16 4.44
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routinely used in virtual screening and generally involves 
two separate steps. The first step is to position ligands 
into a protein active site correctly, and the second step 
is scoring and ranking these docked ligands reasonably. 
An increasingly large number of studies reported that the 
docking method and the scoring functions are sensitive 
to receptors.

In this study, we present a thorough investigation of the 
performance of the LibDock and CDOCKER protocol 
in DS software on a test set of 22 TβR1 protein–ligand 
complexes. The results demonstrate that the CDOCKER 
protocol based on CHARMm is the optimal docking 
protocol for TβR1. With a successful docking rate of 
95%, which means high reliability, the CDOCKER pro-
tocol can be efficiently applied for accurate docking in 
medium-size virtual screening experiments of TβR1.

A dataset including 281 known active and 8677 inac-
tive ligands was used to determine the best scoring func-
tion in DS software for scoring ligands posed by molecule 
docking. The ROC curves are used to compare the per-
formance of scoring functions in attributing better scores 
to active than inactive ligands. The ROC curves of Ludi 
1, PMF, Ludi 2, Ludi 3, PMF04, PLP1, PLP2, LigScore2, 
Jain and LigScore1 are better than that of the random dis-
tribution model, with AUC of 0.864, 0.856, 0.842, 0.812, 
0.776, 0.774, 0.769, 0.762, 0.697 and 0.660, respectively. 
Based on the pairwise comparison of ROC curves, we 
strongly recommend that Ludi 1 and PMF should be 
chosen as scoring functions for virtual screening of new 
TβR1 inhibitors. The PMF ROC curve is above the Ludi 
1 ROC curve in the higher SP region in the lower left 
quarter, thus for the same SP, the PMF ROC curve has 
higher SE and PPV values. It is advantageous to reduce 
the number of false positive molecules and the cost of 
experimental activity verification. Additionally, the Ludi 
1 ROC curve is above the PMF ROC curve in the higher 
SE region in the upper-right corner; therefore, for the 
same SE, the Ludi 1 ROC curve has higher SP, which is 
optimal for obtaining more novel molecules.

Consistent with ROC curve, EF evaluation also sup-
ports PMF and Ludi-1 as the top two scoring functions. 
EF evaluation results also demonstrates that the phar-
macophore model can get good virtual screening results 
in the highest score areas. Therefore, molecular dock-
ing and pharmacophore cross validation can be used to 
obtain more accurate virtual screening results.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1306​5-020-00704​-3.

Additional file 1: Table S1. Crystal structures of TβR1 with inhibi‑
tors reported in PDB. Table S2. Physicochemical properties of each 

crystallographic ligand. MW, molecular weight; HBD, Number of hydrogen 
bond donors; HBA, Number of hydrogen bond receptors. Table S3. 
Physicochemical properties of compounds in the test set. NC, Number of 
compounds; MW, molecular weight; nROT, Number of rotatable bonds; 
nHBA, Number of hydrogen acceptor donors; nHBA, Number of hydrogen 
bond receptors; nRings, Number of rings. Fig. S1. Overlay of 22 TβR1 
proteins in the PDB. Except for the Gly367-Gly374 region (far away from 
the binding site) of 1RW8 and 1PY5, the rest of the crystal structures were 
well overlapped.
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