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Formula of compressibility and using it 
for air, noble gases, some hydrocarbons gases, 
some diatomic simple gases and some other 
fluids
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Abstract 

Based on solutions of the Ornstein–Zernike equation (OZE) of Lennard–Jones potential for mean spherical approxima‑
tion (MSA), we derive analytical formula for the compressibility assuming that the system is of low density, homoge‑
neous, isotropic and composed of one component. Depending on this formula, we find the values of the bulk modu‑
lus and the compressibility of air at room temperature and the bulk modulus and the compressibility of Methane, 
Ethylene, Propylene and Propane at nine per ten of critical temperature of each hydrocarbon. Also, we find the speed 
of sound in the air at various temperatures, the speed of sound in each of Helium, Neon, Argon, Krypton, Xenon, 
Methane, Ethylene, Propylene, Propane, Hydrogen, Nitrogen, Fluorine, Chlorine, Oxygen, Nitrous oxide (laughing gas), 
Carbon dioxide, Nitric oxide, Carbon monoxide, Sulphur dioxide and dichlorodifluoromethane at room temperature. 
Besides, we find the speed of sound in Methane, Ethylene, Propylene and Propane at nine per ten of critical tempera‑
ture of each hydrocarbons depending on the formula we find. We show that the simple formula we derive in this 
work is reliable and agrees with the results obtained from other studies and literatures. We believe it can be used for 
many systems which are in low densities and described by Lennard–Jones potential.

Keywords:  Compressibility, Lenard–Jones potential, Bulk modulus, One component fluid, Bulk modulus, Static 
structure factor, Ornstein–zernike equation and radial distribution function, Speed of sound, Critical temperature, 
Simple fluid
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Background
The compressibility is one of the most important prop-
erties in thermodynamic of materials, and we can get 
it from experimental methods or from some theoreti-
cal methods. In this work we find analytical formula of 
the compressibility from the Ornstein–Zernike equa-
tion which is one of the basic equations used to study 
the physical properties of fluids because this equation 
enables us to find the physical properties of materials by 

theoretical ways. For one component system, the Orn-
stein–Zernike equation in the homogeneous formalism is 
given as follows [1–7]:

 where c(r) is the direct correlation function, h(r) is the 
total correlation function, ρ is particle’s density and r is 
the position and the integral is over the volume of posi-
tion of the particles. The Ornstein–Zernike equation is 
considered a very important equation in the statistical 
mechanics and materials sciences, especially, in the static 
formalism because by solving this equation we find the 

(1)h(r) = c(r)+ ρ
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radial distribution function (RDF) of a specific system 
which enables us to find a lot of properties of the mate-
rial by applying the integration of a certain property on 
this function. We can find a solution for the Ornstein–
Zernike equation using a suitable interaction potential of 
the system, however, we need another equation between 
pair potential and the total correlation function or the 
direct correlation function which we get it from a num-
ber of possible approximations of the direct correlation 
function which are used in the theory of simple liquids 
or simple fluids such as Born Green Yvon approximation 
(BGYA), Hyper Netted Chain approximation (HNCA), 
Percus Yevick approximation (PYA) and mean spherical 
approximation (MSA). All of these approximations give 
closed relations between the direct correlation function 
and the interaction potential of the system either in a 
linear form or in a nonlinear form [8–25]. In this work, 
we use the mean spherical approximation to find the 
solutions of the Ornstein–Zernike equation where this 
approximation relates the direct correlation function and 
the interaction potential via a linear formula. The direct 
correlation function based on the mean spherical approx-
imation is given as follows [2, 4–7]:

where kB is Boltzmann constant, T is absolute tempera-
ture and d is the diameter of particles while U(r) is the 
interaction potential between the particles of the system. 
The interaction potential which we used in this work is 
Lenard–Jones potential, which is very important as a fit-
ting potential and a structure potential in a lot of studies 
such as soft materials and simple fluids [3, 8–24] and this 
potential is given by the following formula:

where ε represents the depth of Lenard–Jones potential 
or its minimum value and rm is the distance at which 
Lenard–Jones potential equals its minimum value which 
is called the minimum distance of Lenard–Jones poten-
tial while σ is the distance at which Lenard–Jones poten-
tial equals zero.

Methods
We find a formula for the compressibility of one compo-
nent fluid from the solutions of the Ornstein–Zernike 
equation for Lenard–Jones potential using mean spheri-
cal approximation for the direct correlation function. We 
obtain the radial distribution function of the system and 
from this function we get the compressibility of the sys-
tem which is related to the radial distribution function 
via the following formula [1, 7, 11]:

(2)c(r) ≈ −U(r)/(kBT ) ; r > d

(3)ULJ (r) = 4ε
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where β = 1/(kBT), χ id
T  is the compressibility of ideal gas 

and g(r) is the radial distribution function of the sys-
tem. So, If we use the solutions of the Ornstein–Zernike 
equation of Lenard-Johns potential from mean spherical 
approximation in the previous equation and if we use the 
integral of the position instead of the integral of the vol-
ume in the homogeneous and isotropic case, we find that 
the compressibility of the system is given by the following 
integral equation:

where C1, C2 are coefficients and α is defined as follows:

By integrating the equation of the compressibility 
over the position, we find the following formula of the 
compressibility:

Results and discussion
The previous equation represents the basic thing of this 
study which is the formula of the compressibility. We 
see that the formula of the compressibility that we found 
(Eq. 7) contains the Lennard–Jones potential parameters, 
the diameter of particles in the system, the temperature 
and the density of the system’s particles. We can use the 
formula in a wide variety of materials interacting with 
each other via Lennard–Jones potential such as light 
polymers and some simple fluids systems such as atomic 
Argon. In this work, we use this formula to calculate the 
compressibility and the bulk modulus for some hydro-
carbons and air. Besides and based on the formula, we 
calculate the speed of sound in some atomic fluids such 
as Argon, some hydrocarbons, diatomic fluid such as 
Oxygen and some other gases such as dichlorodifluo-
romethane. We calculated the compressibility and the 
bulk modulus of air from this study, i.e. Eq. 7, at 298.16 
K° and we inserted the results in Table 1 with the value of 
bulk modulus of air found in some literatures in addition 
to the Lenard–Jones potential’s parameters of air.

As we see from Table 1, the result resulted from this 
work and the result found in the literatures for the bulk 
modulus of air are close to each other at the previous 
temperature.
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In addition to that, we calculated the compressibil-
ity of air from the formula we derived in this work at 
different temperatures and we inserted the results of 
this calculation in Table  2. With the bulk modulus of 
air at the same temperatures. As we see from Table 2, 

the bulk modulus of air increases when temperature 
increases which agree well with literatures.

Also, We calculated the speeds of sound in some 
inert gases (Helium, Neon, Argon, Krypton and Xenon) 
based on the formula which we found and the results 
were illustrated in Table 3 with the densities, the molar 
masses and Lenard–Jones potential parameters of the 
noble gases.

As we see from Table 3, the values of the speed of sound 
of the noble atomic gases which we calculated from this 
study based on the simple formula that we found have the 
same order with other references [26–30] for the gaseous 
Helium, references [26, 30] for the gaseous Neon, refer-
ences [26–28, 30] for the gaseous Argon and references 
[28, 30] for the gaseous Krypton and the gaseous Xenon. 

Table 1  The compressibility and the bulk modulus of air Β 
from Eq. 7 and the bulk modulus of air from the literatures 
Β* at 25 °C
σ

(A◦)
ε ×10

2 (ev) T  (K◦) χT

(MPa
−1)

B

(MPa)

B
∗

(MPa)

3.6170 1.033 298.16 9.7929 0.1021 0.1010

Table 2  The compressibility of air and the bulk modulus of air based on Eq. 7 at different temperatures in the gaseous 
phase

t

(C◦)

ρm

(mg/cc)

χT

(MPa
−1)

B× 10

(MPa)

t

(C◦)

ρm

(mg/cc)

χT

(MPa
−1)

B× 10

(MPa)

−25 1.4224 9.8726 1.0129 5 1.2844 9.7480 1.0259

−24 1.4178 9.8647 1.0137 6 1.2798 9.7478 1.0259

−23 1.4132 9.8570 1.0145 7 1.2752 9.7479 1.0259

−22 1.4086 9.8495 1.0153 8 1.2706 9.7483 1.0258

−21 1.4040 9.8424 1.0160 9 1.2660 9.7488 1.0258

−20 1.3994 9.8355 1.0167 10 1.2614 9.7497 1.0257

−19 1.3948 9.8289 1.0174 11 1.2568 9.7508 1.0256

−18 1.3902 9.8225 1.0181 12 1.2522 9.7521 1.0254

−17 1.3856 9.8164 1.0187 13 1.2476 9.7537 1.0252

−16 1.3810 9.8106 1.0193 14 1.2430 9.7556 1.0251

−15 1.3764 9.8050 1.0199 15 1.2384 9.7577 1.0248

−14 1.3718 9.7997 1.0204 16 1.2338 9.7601 1.0246

−13 1.3672 9.7947 1.0210 17 1.2292 9.7627 1.0243

−12 1.3626 9.7899 1.0215 18 1.2246 9.7656 1.0240

−11 1.3580 9.7854 1.0219 19 1.2200 9.7687 1.0237

−10 1.3534 9.7811 1.0224 20 1.2154 9.7721 1.0233

−9 1.3488 9.7771 1.0228 21 1.2108 9.7757 1.0229

−8 1.3442 9.7734 1.0232 22 1.2062 9.7796 1.0225

−7 1.3396 9.7699 1.0236 23 1.2016 9.7838 1.0221

−6 1.3350 9.7667 1.0239 24 1.1970 9.7882 1.0216

−5 1.3304 9.7637 1.0242 25 1.1924 9.7929 1.0211

−4 1.3258 9.7610 1.0245 26 1.1878 9.7978 1.0206

−3 1.3212 9.7585 1.0247 27 1.1832 9.8030 1.0201

−2 1.3166 9.7563 1.0250 28 1.1786 9.8085 1.0195

−1 1.3120 9.7544 1.0252 29 1.1740 9.8142 1.0189

0 1.3074 9.7527 1.0254 30 1.1694 9.8202 1.0183

1 1.3028 9.7512 1.0255 31 1.1648 9.8265 1.0177

2 1.2982 9.7501 1.0256 32 1.1602 9.8330 1.0170

3 1.2936 9.7491 1.0257 33 1.1556 9.8398 1.0163

4 1.2890 9.7484 1.0258 34 1.1510 9.8468 1.0156



Page 4 of 7Al‑Raeei and El‑Daher ﻿BMC Chemistry           (2020) 14:47 

We see that the smallest value of the speed of sound is 
for Xenon and the biggest value is for Helium which also 
agrees with literatures.

Also, We calculated the speeds of sound in some 
hydrocarbons (Methane, Ethylene, Propylene and Pro-
pane) from this work, based on Eq.  7, because these 
hydrocarbons interact through Lenard–Jones potential 
like in [31], the results were inserted in Table 4 with the 
densities, the molar masses and Lenard–Jones poten-
tial’s parameters of the used hydrocarbon materials. We 
used the previous hydrocarbons in the calculations of the 
compressibility and the bulk modulus as an example of 
other hydrocarbons and because the parameters of the 
interaction potential are known for these hydrocarbons 
and we can compare the bulk modules values of these 
hydrocarbons with other studies.

We see from Table 4 that the speed of sound agrees well 
with other references, references [26–28, 30] for the gase-
ous Methane and the gaseous Ethylene, reference [30] for 
the gaseous Propylene, references [28, 30] for the gase-
ous Propane at 25 °C. In addition, we calculated the com-
pressibility of the same hydrocarbons at temperatures 
equal to 0.9 of the critical temperature TC and pressures 
about 0.5 of critical pressure PC of each hydrocarbon 
from this study, i.e. Equation  7, and we inserted the 
results in the Table 5 which also, contains Lenard–Jones 
potential’s parameters of these hydrocarbon materials 
in addition to the molar mass of the hydrocarbons. For 
comparison our results with other results, we calculated 

the bulk modulus at the previous temperatures for these 
hydrocarbons and we inserted the results with the results 
for the bulk modulus of these hydrocarbons at the previ-
ous conditions from reference [32] in Table 6 which also 
contains the compressibility from our calculations.

We calculated the speeds of sound in the same hydro-
carbons at the same conditions from this study and 
the results were inserted in Table  7 with comparisons 
from reference [30] for the speeds of sound in the same 
hydrocarbons.

As we note from the comparisons between the values 
of the bulk modulus of Methane and the bulk modulus 
of Propane which we calculated from this study with 
the values of the bulk modulus of Methane and the bulk 
modulus of Propane resulted from reference [32] at the 
same conditions in Table  6, the values are of the same 
order and close to each other.

Also, we see the same thing from the comparisons 
between the values of the speed of sound in the four 
hydrocarbons calculated from this study and within 
reference [30] in Table 7 at the same conditions. After 
that, we calculated the values of the speed of sound in 
some simple diatoms gases, namely, Hydrogen, Nitro-
gen, Fluorine, Chlorine and Oxygen from this study, i.e. 
Eq. 7, and we inserted the results in Table 8. The den-
sities, the molar masses and Lenard–Jones potential 
parameters of the considered diatomic simple gaseous 
materials were inserted in the same table.

Table 3  The speeds of  sound in  noble gases at  t = 25  °C 
from this work based on Eq. 7

Substance He Ne Ar Kr Xe

ρm(mg/cc) 0.1786 0.9002 1.7840 3.7490 5.8940

σ(A◦) 2.576 2.789 3.432 3.675 4.009

ε/kB(K
◦) 10.2 35.7 122.4 170.0 234.7

M(g/mol) 4.0026 20.1797 39.7920 83.7980 131.2930

v(m/s) 787.4806 350.7260 249.5060 171.7220 136.8410

Table 4  The speeds of  sound in  Methane, Ethylene, 
Propylene and  Propane at  t = 25  °C from  this work based 
on Eq. 7

Hydrocarbon CH4 C2H4 C3H6 C3H8

ρm(mg/cc) 0.657 1.18 1.81 2.01

σ(A◦) 3.780 4.228 4.766 4.934

ε/kB(K
◦) 1.31 1.84 2.34 2.33

M(g/mol) 16.04 28.05 42.08 44.10

v(m/s) 392.6560 296.1230 240.6070 234.6880

Table 5  The compressibility of  some hydrocarbons 
from Eq. 7 at 0.9 TC of each hydrocarbon

Hydrocarbon σ

(A◦)
ε × 10

2

(eV)

M

(g/mol)

χT

(atm−1)

CH4 3.780 1.31 16.04 0.0425

C2H4 4.228 1.84 28.05 0.0450

C3H6 4.766 2.34 42.08 0.0794

C3H8 4.934 2.33 44.10 0.0340

Table 6  The bulk modulus of  the  some hydrocarbons 
from  our work and  from  reference [32] at  0.9 TC of  each 
hydrocarbon

Hydrocarbon χT

(atm−1)

B
ThisWork

(atm)

B
[32]

(atm)
[32]

CH4 0.0425 23.5294 29.615

C2H4 0.0450 22.2222 –

C3H6 0.0794 12.5945 –

C3H8 0.0340 29.4118 39.487
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As we see from Table 8, the values of speed of sound 
in the previous diatomic simple gases which calculated 
from this study and the values in other studies, refer-
ences [26–28, 30] for the gaseous Hydrogen and the 
gaseous Oxygen, references [26, 27, 30] for the gase-
ous Nitrogen, reference [30] for the gaseous Fluorine 
and references [26, 27] for the gaseous Chlorine, have 
the same order. Besides, we see that the biggest value of 
the speed of sound is for the Hydrogen and the small-
est value is for the Chlorine. Finally, we calculated the 
values of the speed of sound in some gaseous oxides 
(Nitrous oxide, Carbon dioxide, Nitric oxide, Carbon 
monoxide and Sulphur dioxide) in addition to the speed 
of sound in dichlorodifluoromethane. We inserted the 
results for the previous gases in Table 9. The densities, 

the molar masses and Lenard–Jones potential param-
eters of these gaseous materials were inserted in the 
same table.

We see that the values of the speed of sound in the 
previous gases (Table 9) agree with the results from ref-
erences [26, 28] for the gaseous Nitrous oxide and the 
gaseous Carbon monoxide, references [26, 28, 30] for the 
gaseous Carbon dioxide and the gaseous Sulphur dioxide, 
reference [26] for the gaseous Nitric oxide and reference 
[30] for the gaseous dichlorodifluoromethane.

Conclusion
In this work, we derived analytical formula for the com-
pressibility for homogenous and isotropic system com-
posed of one component at low density assuming that 
the particles in the system interact each other via Lenard-
Jones potential which contains two parts, the first part 
is repulsive and the other is attractive. The compress-
ibility can be found from some experimental methods 
such as [33] and some theoretical methods such as virial 
expansion [34, 35]. In this work, we found a formula of 
the compressibility as a function of particle’s density, 
Lenard–Jones potential parameters and the temperature 
based on solutions of the Ornstein–Zernike equation for 
mean spherical approximation.

The formula we derived was employed to find the com-
pressibility and the bulk modulus values of air at 25  °C 
(Tables  1 and 2) and of some hydrocarbons at defined 
temperatures of each hydrocarbon (Tables 5 and 6), the 
results of the bulk modulus and the compressibility found 
from this study agree qualitatively with the literature for 
air and other reference [32] for hydrocarbons. Besides, 
the speeds of sound in some hydrocarbons at defined 
temperatures of each hydrocarbon (Tables 4 and 7) and 
the speeds of sound in Helium, Neon, Argon, Krypton, 
Xenon, Hydrogen, Nitrogen, Oxygen, Chlorine, Fluorine, 
Methane, Ethylene, Propylene, Propane, Carbon monox-
ide, Carbon dioxide, Sulfur dioxide, Laughing gas, Nitric 
oxide and dichlorodifluoromethane (Tables  3, 8 and 9). 

Table 7  The speeds of  sound in  the  last hydrocarbons 
from  our work and  from  reference [30] at  the  same 
previous conditions

Hydrocarbon χT

(atm−1)

vThisWork

(m/s)

v[30]

(m/s)

CH4 0.0425 244.2184 277.62

C2H4 0.0450 234.7020 257.79

C3H6 0.0794 232.9465 239.00

C3H8 0.0340 192.8914 194.37

Table 8  The speeds of  sound in  Hydrogen, Nitrogen, 
Fluorine, Chlorine and Oxygen at t = 25 °C from this study 
based on Eq. 7 and from references [26–28, 30]

Substance H2 N2 F2 Cl2 O2

ρm(mg/cc) 0.0823 1.1452 1.5537 3.2000 1.3087

σ(A◦) 2.915 3.667 3.653 4.115 3.433

ε/kB(K
◦) 38.0 99.8 112.0 357.0 113.0

M(g/mol) 2.0159 28.0134 37.9968 70.9060 31.9988

v(m/s) 1109.7000 297.4974 255.3772 185.3550 278.2920

Table 9  The speeds of  sound in  Nitrous oxide, Carbon dioxide, Nitric oxide, Carbon monoxide, Sulphur dioxide 
and Dichlorodifluoromethane at t = 25 °C from this work based on Eq. 7

Substance N2O CO2 NO CO SO2 CCl2F2

ρm(mg/cc) 1.8088 1.8079 1.3402 1.1453 2.6642 2.0383

σ(A◦) 3.879 3.996 3.470 3.590 4.026 5.116

ε/kB(K
◦) 220.0 190.0 119.0 110.0 363.0 280.0

M(g/mol) 44.0128 44.0095 30.0061 28.0101 64.0640 120.9140

v(m/s) 236.6072 236.7511 287.3415 297.4551 195.2006 142.5648
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We found that our results agree qualitatively with other 
studies.

The formula that we derived for the compressibility 
(Eq.  7) is simple and it can be applied for many fluids 
that interact via Lenard–Jones potential, only, we need 
the Lenard-Jones potential parameters and the density of 
particles in the system at a certain temperature.
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