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Abstract 

Phloem systemicity is a desirable property for insecticides to control sucking insects. However, the development of 
phloem systemic insecticides is challenging. One possible strategy is to link existed insecticides with endogenous 
substances so that the resulting conjugates can be transported by specific transporters into the phloem. In this study, 
novel dipeptide promoieties were introduced into chlorantraniliprole, which is an efficient and broad-spectrum 
anthranilic diamide insecticide without phloem mobility. Twenty-two new dipeptide-chlorantraniliprole conju-
gates have been synthesized. Systemic tests showed that all conjugates exhibited phloem mobility in Ricinus com-
munis. In particular, compound 4g with alanyl-alanine dipeptide fragment was able to accumulate in phloem sap 
(114.49 ± 11.10 μM) in the form of its hydrolysis product 5g. Results of bioassay showed that conjugates 4g and 5g 
were able to exhibit comparable insecticidal activity against Plutella xylostella L. and Spodoptera exigua compared to 
its parent compound chlorantraniliprole. This work demonstrated that the dipeptide structures were able to contrib-
ute to the improvement of the uptake and phloem mobility of chlorantraniliprole, and two phloem mobile conju-
gates with satisfactory in vivo insecticidal effect was obtained as new candidates for high-efficient insecticides.

Keywords:  Chlorantraniliprole, Phloem-mobile pesticides, Dipeptide, Insecticidal activity

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
With increasing demand for food and environmen-
tal safety, the use of pesticides is subjected to stringent 
restrictions. Furthermore, it was apparent to all that only 
a very small part of applied pesticide actually reached 
the sites of action, and the off-target portion became 
environmental pollutant [1, 2] which led to great public 
concern. Hence, the accurate and efficient utilization of 
agrochemicals was the focus of our research.

It has been demonstrated that coupling existing non-
phloem mobile pesticide structures with endogenous 
substances, such as amino acids and saccharides, was 

effective on improving their phloem mobility [3–14]. For 
example, a series of phloem mobile glucose–fipronil con-
jugates (GTF and GOF), glycinergic–fipronil conjugate 
(GlyF) and alanine ester-chlorantraniliprole conjugate 
were synthesized in our previous work, and their uptake 
process was proven to be mediated by active transport 
systems [5, 6, 8]. Such carrier-mediated transport strat-
egy has been considered as a promising way for vector-
izing agrochemicals, which can enhance bioavailability of 
pesticides [15].

Dipeptides and tripeptides can be transported into 
plant cells through peptide transporters, which were first 
discovered in Arabidopsis plants [16] as a H+-coupled 
transporter for oligopeptides [17, 18]. Similar facilitator 
transporters, such as oligopeptide transporter (PepT1 
and PepT2), were also found in mammals to drive the 
uptake of di- and tri-peptides [19, 20]. It has been proved 
that dipeptides could be used as promoieties to link with 
pharmacologically active substances and deliver prod-
rugs to target tissues [21–23]. Therefore, conjugating 
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dipeptide structures with existing pesticides is expected 
to be another potential strategy to obtain new candidates 
for phloem-mobile pesticides, which could enhance the 
efficiency and reduce the consumption of pesticides.

Materials and methods
Chemistry
A series of new dipeptide-chlorantraniliprole conjugates 
were synthesized by coupling chlorantraniliprole with 
different dipeptides as shown in Scheme  1. Reacting 
intermediate 1 with corresponding amino acid methyl 
ester hydrochlorides led to 2a–b [24, 25]. Then, to a 

solution of compound 2a or 2b in tetrahydrofuran (THF), 
lithium hydroxide was slowly added. After being stirred 
for 2 h, the reaction mixture was acidified to pH = 3 with 
1 M hydrochloric acid (HCl), and the organic phase was 
concentrated under reduced pressure to obtain 3a and 
3b [26]. To a solution of 3a or 3b in dry dichlorometh-
ane were sequentially added amino acid hydrochlorides, 
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydro-
chloride (EDCI), and N, N-dimethyl-4-aminopyridine 
(DMAP). The mixture was stirred at room temperature 
overnight. After evaporating the solvent in vacuo, the 
residue was purified by flash column chromatography 

Scheme 1  Synthetic route of target compounds 4a–k and 5a–k. General reaction conditions: a TEA, CH2Cl2, room temperature to 45 °C, 8 
h; b LiOH, THF/H2O, 0 °C to room temperature, 2 h; c NMM, EDCI, DMAP, CH2Cl2, room temperature, overnight; d LiOH, THF/H2O, 0 °C to room 
temperature, 2 h
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(silica gel, petroleum ether/ethyl acetate = 2:1, v/v) to 
afford compounds 4a–k [27]. Compounds 5a–k were 
prepared with similar hydrolysis reactions as used to pre-
pare compounds 3a and 3b. Purifications of the crude 
products were performed via flash column chromatog-
raphy (silica gel, petroleum ether/ethyl acetate/acetic 
acid = 1:1:0.005, v/v/v).

Reagents were purchased from commercial resources 
and were used without further purification unless other-
wise stated. All reactions were carried out under nitro-
gen atmosphere with dry solvents and were monitored by 
thin-layer chromatography (TLC) analysis using silica gel 
GF254 thin-layer plates, and spots were visualized with a 
ZF-20D ultraviolet (UV) analyzer. Column chromatogra-
phy purification was performed over silica gel (200–300 
mesh, Qingdao Marine Chemical Ltd.). 1H fourier trans-
form nuclear magnetic resonance (FT-NMR) spectra 
were measured with a Bruker AV-600 MHz instrument 
and calibrated using residual un-deuterated solvents as 
internal references (CDCl3: δ = 7.26 ppm for 1H NMR; 
DMSO-d6: δ = 2.50 ppm for 1H NMR) [28]. Multiplici-
ties were reported as follows: singlet (s), doublet (d), 
triplet (t), quartet (q), doublet of doublets (dd), and mul-
tiplet (m). Coupling constants were reported as J values 
in hertz. MS data were obtained using the Waters SYN-
APT™ mass spectrometry.

General procedure for synthesis of compounds 2a–b
To a dry round-bottomed flask containing a solution of 
dry triethylamine (12 mmol) in 20 mL anhydrous dichlo-
romethane (CH2Cl2), glycine methyl ester hydrochloride 
(1.50 g, 12 mmol) or l-alanine methyl ester hydrochlo-
ride (1.67 g, 12 mmol) was added under nitrogen, respec-
tively. The reaction mixture was stirred for 30 min at 
room temperature. A solution of compound 1 (10 mmol) 
in anhydrous CH2Cl2 was then added dropwise under 
nitrogen. The suspension was warmed up to 45 ℃ and 
stirred for 8 h until TLC indicated complete consump-
tion of the starting materials. The reaction mixture was 
cooled to room temperature, followed by the addition of 
water (10 mL). The mixture was extracted with ethyl ace-
tate (3 × 10 mL). The combined organic layer was dried 
over Na2SO4, filtered and concentrated by rotary evapo-
ration to obtain 2a and 2b, which were used in the next 
step without purification.

General procedure for synthesis of compounds 3a–b [29]
Compound 2a or 2b (5 mmol) was added in the mixed 
solvent of THF and H2O at 0℃, then lithium hydroxide 
(0.63 g, 15 mmol) was slowly added. After being stirred 
for 2 h, the reaction mixture was acidified to pH = 2 with 
HCl (1 M). The organic phase was removed by rotary 
evaporation. The residual aqueous solution was extracted 

with ethyl acetate (3 × 20 mL), and the combined organic 
extract was washed with H2O (3 × 20 mL), dried over 
Na2SO4, then concentrated under reduced pressure to 
obtain crude product of 3a and 3b which was used in the 
next step directly.

General procedure for synthesis of compounds 4a–k [27]
To a solution of 3a or 3b (10 mmol) in dry CH2Cl2 (10 
mL) were sequentially added amino acid hydrochlorides 
(13 mmol), EDCI (2.88 g, 15 mmol), and DMAP (0.61 g, 
5.0 mmol). The mixture was stirred at room temperature 
for overnight, then diluted with H2O (10 mL), acidified 
with citric acid (10%) and extracted with CH2Cl2 (3 × 10 
mL). The combined organic layers were washed with sat-
urated NaHCO3 aq. Solution and dried over Na2SO4, fil-
tered, and concentrated. The residue was purified by flash 
column chromatography (silica gel, petroleum ether/
ethyl acetate = 2:1, v/v) to afford compounds of 4a–k.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido]‑5‑chloro‑3‑methylbenzoyl)glycyl‑
glycinate (4a)  White solid in 79% yield; 1H NMR (600 
MHz, DMSO-d6): δ 10.26 (s, 1H), 8.66 (s, 1H), 8.47 (dd, 
J = 4.7, 1.5 Hz, 1H), 8.19 (t, J = 6.0 Hz, 1H), 8.15 (dd, 
J = 8.1, 1.5 Hz, 1H), 7.59 (dd, J = 8.1, 4.7 Hz, 1H), 7.51 (d, 
J = 2.4 Hz, 1H), 7.49 (s, 1H), 7.31 (s, 1H), 3.83 (d, J = 5.9 
Hz, 2H), 3.77 (d, J = 5.8 Hz, 2H), 3.62 (s, 3H), 2.16 (s, 3H). 
13C NMR (151 MHz, DMSO-d6): δ 172.55, 172.48, 172.31, 
165.79, 165.72, 156.03, 148.84, 147.53, 139.68, 139.16, 
136.15, 131.77, 131.41, 128.33, 127.22, 127.04, 126.31, 
111.14, 61.84, 54.96, 49.05, 18.11. ESI-HRMS calcd. For 
C22H18BrCl2N6O5: [M−H]− 594.9899, found 594.9893.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑alaninate (4b)  White solid in 71% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.24 (s, 1H), 8.54 (t, J = 5.8 
Hz, 1H), 8.49 (d, J = 4.6 Hz, 1H), 8.31 (d, J = 6.9 Hz, 1H), 
8.16 (d, J = 7.9 Hz, 1H), 7.60 (dd, J = 8.2, 4.7 Hz, 1H), 
7.49 (d, J = 15.7 Hz, 2H), 7.34 (s, 1H), 4.31 (q, J = 7.2 Hz, 
1H), 3.85–3.73 (m, 2H), 3.62 (s, 3H), 2.16 (s, 3H), 1.27 
(d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ 
173.11, 167.81, 167.62, 155.99, 148.79, 146.78, 139.13, 
139.08, 138.41, 133.56, 132.17, 132.11, 130.59, 128.87, 
128.09, 125.69, 125.05, 110.88, 52.68, 48.37, 43.26, 18.96, 
18.14. ESI-HRMS calcd. For C23H20BrCl2N6O5: [M−H]− 
609.0056, found 609.0053.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑leucinate (4c)  White solid in 65% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.26 (s, 1H), 8.53 (t, J = 5.9 Hz, 
1H), 8.49 (d, J = 4.7 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 8.16 
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(d, J = 8.0 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 Hz, 1H), 7.50–7.46 
(m, 2H), 7.34 (s, 1H), 4.32 (ddd, J = 9.8, 7.8, 5.1 Hz, 1H), 
3.83 (dd, J = 16.6, 6.0 Hz, 1H), 3.76 (dd, J = 16.6, 5.8 Hz, 
1H), 3.61 (s, 3H), 2.16 (s, 3H), 1.63–1.51 (m, 2H), 1.52–
1.47 (m, 1H), 0.86 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 6.4 Hz, 
3H). 13C NMR (151 MHz, DMSO-d6): δ 173.30, 169.24, 
166.51, 156.21, 148.70, 147.54, 139.88, 139.77, 139.29, 
135.67, 131.99, 131.40, 128.15, 127.29, 127.02, 126.16, 
111.20, 52.34, 50.73, 42.55, 40.42, 24.65, 23.16, 21.79, 
18.15. ESI-HRMS calcd. For C26H26BrCl2N6O5: [M−H]− 
651.0525, found 651.0514.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑valinate (4d)  White solid in 58% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 9.99 (s, 1H), 8.41 (dd, J = 4.7, 
1.6 Hz, 1H), 7.82 (dd, J = 8.1, 1.6 Hz, 1H), 7.36–7.32 (m, 
2H), 7.27 (d, J = 1.7 Hz, 1H), 7.23 (t, J = 5.2 Hz, 1H), 7.03 
(s, 1H), 6.67 (d, J = 8.7 Hz, 1H), 4.53 (dd, J = 8.7, 5.0 Hz, 
1H), 4.04 (dd, J = 7.2, 5.2 Hz, 2H), 3.74 (s, 3H), 2.18 (s, 
3H), 2.14 (dd, J = 11.9, 6.9 Hz, 1H), 0.91 (d, J = 6.9 Hz, 
6H). 13C NMR (151 MHz, DMSO-d6): δ 172.90, 172.39, 
165.68, 156.03, 148.83, 147.53, 139.69, 139.17, 135.98, 
131.84, 131.38, 128.31, 127.22, 127.04, 126.33, 111.11, 
57.55, 52.18, 49.18, 30.61, 19.47, 18.75, 18.52, 18.12. ESI-
HRMS calcd. For C25H24BrCl2N6O5: [M−H]− 637.0369, 
found 637.0359.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑serinate (4e)  White solid in 64% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.24 (s, 1H), 8.52 (t, J = 6.1 Hz, 
1H), 8.49 (d, J = 4.7 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 8.16 
(d, J = 8.0 Hz, 1H), 7.61 (dd, J = 7.3, 4.2 Hz, 1H), 7.50 (s, 
1H), 7.44 (s, 1H), 7.36 (s, 1H), 5.09 (t, J = 5.7 Hz, 1H), 
4.39 (q, J = 5.3 Hz, 1H), 3.85 (qd, J = 16.7, 5.9 Hz, 2H), 
3.71 (dt, J = 11.0, 5.4 Hz, 1H), 3.64 (s, 3H), 3.63–3.59 
(m, 1H), 2.16 (s, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 170.89, 168.90, 168.11, 156.37, 148.71, 146.63, 139.37, 
139.00, 138.35, 133.33, 132.29, 131.69, 131.29, 129.07, 
125.88, 125.38, 111.16, 62.13, 54.69, 52.81, 43.45, 29.68, 
18.76. ESI-HRMS calcd. For C23H20BrCl2N6O5: [M−H]− 
625.0005, found 625.0007.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l‑ala‑
nylglycinate (4f )  White solid in 76% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.24 (s, 1H), 8.49 (s, 2H), 8.19 
(s, 1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H), 7.61 (dd, J = 8.1, 4.7 
Hz, 1H), 7.52 (dd, J = 2.5, 0.7 Hz, 2H), 7.35 (s, 1H), 4.31 
(s, 1H), 3.82 (d, J = 5.9 Hz, 2H), 3.63 (s, 3H), 2.18 (s, 3H), 
1.21 (d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 173.06, 170.59, 166.07, 156.12, 148.80, 147.54, 139.77, 

139.71, 138.92, 135.97, 131.80, 131.75, 131.33, 128.27, 
127.25, 127.05, 126.42, 111.10, 52.14, 49.23, 41.00, 18.11, 
18.07. ESI-HRMS calcd. For C23H20BrCl2N6O5: [M−H]− 
609.0056, found 609.0042.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l‑ala‑
nyl‑l‑alaninate (4g)  White solid in 76% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.25 (s, 1H), 8.49 (dd, J = 4.7, 
1.6 Hz, 1H), 8.37 (d, J = 4.9 Hz, 1H), 8.27 (d, J = 7.4 Hz, 
1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 
Hz, 1H), 7.50 (dd, J = 7.3, 2.3 Hz, 2H), 7.36 (s, 1H), 7.36 
(s, 1H), 4.39–4.32 (m, 1H), 4.31–4.25 (m, J = 7.3, 2.7 Hz, 
1H), 3.62 (s, 3H), 2.18 (s, 3H), 1.26 (d, J = 7.3 Hz, 3H), 
1.21 (d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 173.30, 172.41, 165.83, 156.06, 148.80, 147.52, 139.77, 
139.69, 139.06, 135.99, 135.86, 131.83, 131.37, 128.27, 
127.24, 127.02, 126.44, 126.35, 111.14, 52.31, 49.21, 18.41, 
18.14, 17.51. ESI-HRMS calcd. For C24H22BrCl2N6O5: 
[M−H]− 623.0212, found 623.0209.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l‑ala‑
nyl‑l‑methioninate (4 h)  White solid in 65% yield; 1H 
NMR (600 MHz, DMSO-d6): δ 10.25 (s, 1H), 8.48 (dd, 
J = 4.7, 1.5 Hz, 1H), 8.40 (d, J = 7.0 Hz, 1H), 8.31 (d, J = 8.7 
Hz, 1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H), 7.61 (dd, J = 8.1, 
4.7 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H), 7.49 (d, J = 2.4 Hz, 
1H), 7.37 (s, 1H), 4.42–4.37 (m, 1H), 4.30 (q, J = 7.2 Hz, 
1H), 3.62 (s, 3H), 2.48–2.36 (m, 2H), 2.17 (s, 3H), 2.00 (s, 
3H), 1.98–1.86 (m, 2H), 1.21 (d, J = 7.2 Hz, 3H). 13C NMR 
(151 MHz, DMSO-d6): δ 172.93, 172.58, 165.95, 156.10, 
148.80, 147.53, 139.70, 139.68, 139.07, 135.95, 131.85, 
131.74, 131.44, 128.30, 127.28, 127.06, 126.39, 111.09, 
52.45, 51.16, 49.54, 31.59, 30.91, 18.35, 18.09, 15.04. ESI-
HRMS calcd. For C26H26BrCl2N6O5S: [M−H]− 683.0246, 
found 683.0237.

Dimethyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
z o l e ‑ 5 ‑ c a r b o x a m i d o) ‑ 5 ‑ c h l o r o ‑ 3 ‑ m e t h y l b e n ‑
zoyl)‑l‑alanyl‑l‑aspartate (4i)  White solid in 64% yield; 
1H NMR (600 MHz, DMSO-d6): δ 10.21 (s, 1H), 8.47 (d, 
J = 4.7 Hz, 1H), 8.38 (d, J = 7.4 Hz, 1H), 8.33 (d, J = 8.0 Hz, 
1H), 8.15 (dd, J = 8.1, 1.5 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 Hz, 
1H), 7.48 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 7.3, 2.5 Hz, 1H), 
7.36 (d, J = 3.0 Hz, 1H), 4.64 (q, J = 6.6 Hz, 1H), 4.31 (q, 
J = 7.3 Hz, 1H), 3.61 (s, 3H), 3.58 (d, J = 9.6 Hz, 3H), 2.80 
(dd, J = 16.4, 6.2 Hz, 1H), 2.70 (dd, J = 16.5, 6.9 Hz, 1H), 
2.16 (s, 3H), 1.17 (d, J = 7.4 Hz, 3H). 13C NMR (151 MHz, 
DMSO-d6): δ 172.59, 171.43, 170.92, 170.88, 165.88, 
156.05, 148.83, 147.53, 139.68, 139.09, 135.95, 131.84, 
131.77, 131.39, 128.32, 127.24, 127.05, 126.35, 111.10, 
52.68, 52.14, 49.02, 48.98, 35.96, 18.10, 18.01. ESI-HRMS 
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calcd. For C26H24BrCl2N6O7: [M−H]− 681.0267, found 
681.0278.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l‑ala‑
nyl‑l‑phenylalaninate (4j)  White solid in 56% yield; 
1H NMR (600 MHz, DMSO-d6): δ 10.22 (s, 1H), 8.48 (d, 
J = 4.6 Hz, 1H), 8.30 (t, J = 8.3 Hz, 2H), 8.15 (d, J = 7.9 
Hz, 1H), 7.60 (dd, J = 6.7, 4.7 Hz, 1H), 7.49 (s, 1H), 7.38 
(d, J = 4.0 Hz, 2H), 7.24 (t, J = 7.7 Hz, 2H), 7.20 (d, J = 7.6 
Hz, 3H), 4.47 (q, J = 7.4 Hz, 1H), 4.36 (q, J = 7.3 Hz, 1H), 
3.58 (s, 3H), 3.02 (dd, J = 13.9, 5.8 Hz, 1H), 2.94 (dd, 
J = 13.9, 8.6 Hz, 1H), 2.17 (s, 3H), 1.15 (dd, J = 7.1, 1.5 Hz, 
3H). 13C NMR (151 MHz, DMSO-d6): δ 173.42, 173.30, 
172.46, 172.35, 165.61, 156.31, 156.00, 148.85, 147.52, 
139.66, 136.05, 131.78, 131.37, 130.56, 128.34, 127.88, 
127.22, 127.03, 126.28, 115.41, 115.33, 111.09, 54.28, 
54.03, 49.03, 36.63, 21.52, 18.48. ESI-HRMS calcd. For 
C30H26BrCl2N6O5: [M−H]− 699.0525, found 699.0523.

Methyl{2‑[3‑bromo‑1‑(3‑chloropyridin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido]‑5‑chloro‑3‑methylbenzoyl}‑l‑ala‑
nyl‑l‑tyrosinate (4k)  White solid in 66% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.23 (s, 1H), 9.20 (d, J = 5.6 Hz, 
1H), 8.47 (s, 1H), 8.31 (s, 1H), 8.31–8.27 (m, 1H), 8.23 (d, 
J = 7.4 Hz, 1H), 8.15 (dd, J = 8.0, 1.5 Hz, 1H), 7.60 (dd, 
J = 8.1, 4.7 Hz, 1H), 7.49 (s, 1H), 7.42 (dd, J = 15.3, 2.5 Hz, 
1H), 7.37 (d, J = 4.5 Hz, 1H), 6.98 (d, J = 8.1 Hz, 2H), 6.63 
(t, J = 8.6 Hz, 2H), 4.45–4.28 (m, 2H), 3.58 (d, J = 23.1 Hz, 
3H), 2.95–2.75 (m, 2H), 2.17 (d, J = 2.9 Hz, 3H), 1.10 (dd, 
J = 60.6, 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 173.42, 173.30, 172.46, 172.35, 165.60, 156.31, 156.00, 
148.85, 147.52, 139.67, 139.05, 136.05, 131.78, 131.37, 
130.56, 128.34, 127.22, 127.03, 126.28, 115.41, 115.33, 
111.09, 54.28, 54.03, 49.03, 36.63, 21.52, 18.11. ESI-
HRMS calcd for C30H26BrCl2N6O6: [M−H]− 715.0474, 
found 715.0474.

Synthesis of compound 5a–k
Compounds 5a–k were prepared with similar hydrolysis 
reactions as used to prepare compounds 3a and 3b.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl}glycylgly‑
cine (5a)  White solid in 90% yield; 1H NMR (600 MHz, 
DMSO-d6): δ 10.26 (d, J = 4.6 Hz, 1H), 8.64 (d, J = 5.5 Hz, 
1H), 8.49 (s, 1H), 8.16 (t, J = 6.3 Hz, 1H), 8.11 (d, J = 5.6 
Hz, 1H), 7.61 (dd, J = 8.4, 4.5 Hz, 1H), 7.53 (s, 1H), 7.50 
(s, 1H), 7.33 (d, J = 4.6 Hz, 1H), 3.80–3.74 (m, 4H), 2.17 
(d, J = 4.6 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ 
171.51, 169.47, 166.66, 156.24, 148.73, 147.56, 139.90, 

139.77, 139.16, 135.72, 131.96, 131.38, 128.19, 127.29, 
127.05, 126.24, 111.19, 42.88, 41.05, 40.38, 18.13. ESI-
HRMS calcd. For C21H16BrCl2N6O5: [M−H]− 580.9743, 
found 580.9753.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑alanine (5b)  White solid in 85% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 12.58 (s, 1H), 10.24 (s, 1H), 
8.52 (t, J = 6.0 Hz, 1H), 8.49 (d, J = 4.7 Hz, 1H), 8.17 (dd, 
J = 11.7, 7.8 Hz, 2H), 7.60 (dd, J = 8.2, 4.8 Hz, 1H), 7.48 
(d, J = 15.4 Hz, 2H), 7.34 (s, 1H), 4.24 (q, J = 7.3 Hz, 1H), 
3.85–3.73 (m, 2H), 2.16 (s, 3H), 1.27 (d, J = 7.2 Hz, 3H). 
13C NMR (151 MHz, DMSO-d6): δ 172.55, 172.48, 172.31, 
165.79, 165.72, 156.03, 148.84, 147.53, 139.68, 139.16, 
136.15, 131.77, 131.41, 128.33, 127.22, 127.04, 126.31, 
111.14, 54.96, 49.05, 18.33, 18.11. ESI-HRMS calcd. For 
C22H18BrCl2N6O5: [M−H]− 594.9899, found 594.9901.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑leucine (5c)  White solid in 91% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 12.56 (s, 1H), 10.26 (s, 1H), 8.52 
(t, J = 5.9 Hz, 1H), 8.49 (dd, J = 4.7, 1.5 Hz, 1H), 8.17–8.13 
(m, 2H), 7.60 (dd, J = 8.1, 4.7 Hz, 1H), 7.50 (d, J = 2.5 Hz, 
1H), 7.48 (d, J = 2.5 Hz, 1H), 7.36 (s, 1H), 4.30–4.22 (m, 
1H), 3.83 (dd, J = 16.6, 6.0 Hz, 1H), 3.76 (dd, J = 16.6, 5.8 
Hz, 1H), 2.16 (s, 3H), 1.66–1.58 (m, 1H), 1.54–1.50 (m, 
2H), 0.87 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.5 Hz, 3H). 13C 
NMR (151 MHz, DMSO-d6): δ 174.38, 169.00, 166.45, 
156.14, 148.75, 147.53, 139.85, 139.74, 139.28, 135.75, 
132.01, 131.94, 131.38, 128.20, 127.27, 127.02, 126.17, 
111.18, 50.70, 42.60, 40.55, 24.75, 23.29, 21.85, 18.16. ESI-
HRMS calcd. For C25H24BrCl2N6O5: [M−H]− 637.0369, 
found 637.0383.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑valine (5d)  White solid in 89% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.31 (s, 1H), 8.34 (dd, J = 4.8, 
1.6 Hz, 1H), 7.91 (dd, J = 8.1, 1.6 Hz, 1H), 7.82 (s, 1H), 
7.40–7.35 (m, 2H), 7.29 (d, J = 2.3 Hz, 1H), 7.18 (d, J = 9.0 
Hz, 1H), 7.00 (s, 1H), 4.31 (dd, J = 9.0, 4.7 Hz, 1H), 4.25 
(dd, J = 15.2, 6.7 Hz, 1H), 3.68 (dd, J = 15.1, 5.3 Hz, 1H), 
2.18 (s, 3H), 2.15–2.07 (m, J = 4.9 Hz, 1H), 0.89 (d, J = 6.9 
Hz, 3H), 0.80 (d, J = 6.9 Hz, 3H). 13C NMR (151 MHz, 
DMSO-d6): δ 174.38, 169.00, 166.45, 156.14, 148.75, 
147.53, 139.85, 139.74, 139.28, 135.75, 132.01, 131.94, 
131.38, 128.20, 127.27, 127.02, 126.17, 111.18, 50.70, 
42.60, 24.75, 23.29, 21.85, 18.16. ESI-HRMS calcd. For 
C24H22BrCl2N6O5: [M−H]− 623.0212, found 623.0212.
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{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)gly‑
cyl‑l‑serine (5e)  White solid in 87% yield; 1H NMR (600 
MHz, DMSO-d6) δ 10.24 (s, 1H), 8.49 (d, J = 4.1 Hz, 1H), 
8.16 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.60 (dd, 
J = 8.2, 4.7 Hz, 1H), 7.50 (s, 1H), 7.45 (s, 1H), 7.36 (s, 1H), 
4.31 (dt, J = 8.4, 4.7 Hz, 1H), 3.85 (qd, J = 16.7, 6.0 Hz, 
2H), 3.71 (dd, J = 11.0, 5.0 Hz, 1H), 3.62 (dd, J = 11.0, 4.2 
Hz, 1H), 2.16 (s, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 171.51, 169.47, 166.66, 156.24, 148.73, 147.56, 139.91, 
139.77, 139.16, 135.72, 131.96, 131.38, 128.19, 127.29, 
127.05, 126.24, 111.19, 42.88, 41.05, 40.38, 18.13. ESI-
HRMS calcd. For C22H18BrCl2N6O6: [M−H]− 610.9848, 
found 610.9845.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl}‑l‑ala‑
nylglycine (5f )  White solid in 93% yield; 1H NMR (600 
MHz, DMSO-d6): δ 10.24 (s, 1H), 8.48 (dd, J = 4.8, 1.5 Hz, 
1H), 8.46 (d, J = 7.3 Hz, 1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H), 
8.10 (t, J = 5.9 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 Hz, 1H), 7.51 
(dd, J = 19.1, 2.4 Hz, 2H), 7.35 (s, 1H), 4.31 (q, J = 7.2 Hz, 
1H), 3.73 (d, J = 5.9 Hz, 2H), 2.18 (s, 3H), 1.20 (d, J = 7.2 
Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ 172.55, 
172.48, 172.31, 165.79, 165.72, 156.03, 148.84, 147.53, 
139.68, 139.16, 136.15, 131.77, 131.41, 128.33, 127.22, 
127.04, 126.31, 111.14, 54.96, 49.05, 18.33, 18.11. ESI-
HRMS calcd. For C22H18BrCl2N6O5: [M−H]− 594.9899, 
found 594.9896.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido]‑5‑chloro‑3‑methylbenzoyl}‑l‑ala‑
nyl‑l‑alanine (5g)  White solid in 91% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 10.25 (s, 1H), 8.48 (dd, J = 4.7, 
1.5 Hz, 1H), 8.36 (d, J = 7.4 Hz, 1H), 8.16 (dd, J = 8.1, 1.6 
Hz, 1H), 8.13 (d, J = 7.5 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 Hz, 
1H), 7.49 (s, 2H), 7.36 (s, 1H), 4.34 (q, J = 7.2 Hz, 1H), 4.21 
(q, J = 7.3 Hz, 1H), 2.17 (s, 3H), 1.24 (d, J = 7.3 Hz, 3H), 
1.19 (d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): 
δ 174.39, 172.20, 165.79, 156.03, 148.80, 147.53, 139.74, 
139.69, 139.06, 135.95, 131.83, 131.81, 131.37, 128.29, 
127.23, 127.04, 126.39, 111.10, 49.19, 47.92, 18.44, 18.11, 
17.77. ESI-HRMS calcd. For C23H20BrCl2N6O5: [M−H]− 
609.0056, found 609.0041.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l‑ala‑
nyl‑l‑methionine (5h)  White solid in 86% yield; 1H 
NMR (600 MHz, DMSO-d6): δ 12.58 (s, 1H), 10.22 (s, 
1H), 8.48 (d, J = 4.8 Hz, 1H), 8.37 (d, J = 7.4 Hz, 1H), 8.15 
(t, J = 8.1 Hz, 2H), 7.60 (dd, J = 7.9, 5.0 Hz, 1H), 7.48 (s, 
1H), 7.44 (s, 1H), 7.37 (s, 1H), 4.38–4.28 (m, 2H), 2.49–
2.39 (m, 2H), 2.16 (s, 3H), 2.02 (s, 3H), 2.00–1.94 (m, 

1H), 1.90–1.82 (m, 1H), 1.20 (d, J = 7.1 Hz, 3H). 13C NMR 
(151 MHz, DMSO-d6): δ 173.65, 172.66, 165.87, 156.01, 
148.86, 147.53, 139.68, 139.66, 139.01, 136.08, 131.77, 
131.39, 130.10, 128.34, 127.24, 127.04, 126.42, 111.06, 
51.13, 49.50, 31.20, 30.08, 18.45, 18.10, 15.06. ESI-HRMS 
calcd. For C25H24BrCl2N6O5S: [M−H]− 669.0089, found 
669.0085.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l
‑alanyl‑l‑aspartic acid (5i)  White solid in 85% yield; 
1H NMR (600 MHz, DMSO-d6): δ 12.54 (s, 2H), 10.21 
(s, 1H), 8.48 (d, J = 4.8 Hz, 1H), 8.35 (t, J = 6.5 Hz, 1H), 
8.20 (t, J = 6.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.60 (dd, 
J = 7.9, 4.9 Hz, 1H), 7.49 (s, 1H), 7.45 (s, 1H), 7.38 (s, 1H), 
4.54 (q, J = 6.8 Hz, 1H), 4.35 (q, J = 7.1 Hz, 1H), 2.74–2.65 
(m, 1H), 2.62–2.53 (m, 1H), 2.17 (s, 3H), 1.17 (t, J = 8.8 
Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ 172.59, 
171.43, 170.92, 170.88, 165.88, 156.05, 148.83, 147.53, 
139.68, 139.09, 135.95, 131.84, 131.77, 131.39, 128.32, 
127.24, 127.05, 126.35, 111.10, 52.68, 52.14, 49.02, 18.10, 
18.01. ESI-HRMS calcd. For C24H20BrCl2N6O7: [M−H]− 
652.9954, found 652.9950.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido)‑5‑chloro‑3‑methylbenzoyl)‑l
‑alanyl‑l‑phenylalanine (5j)  White solid in 79% yield; 
1H NMR (600 MHz, DMSO-d6): δ 12.79 (s, 1H), 10.22 
(s, 1H), 8.47 (d, J = 4.8 Hz, 1H), 8.22 (d, J = 7.5 Hz, 1H), 
8.18 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.60 (dd, 
J = 8.1, 4.9 Hz, 1H), 7.48 (s, 1H), 7.40 (d, J = 2.6 Hz, 1H), 
7.37 (s, 1H), 7.24–7.16 (m, 5H), 4.46 (td, J = 9.0, 4.5 Hz, 
1H), 4.32 (q, J = 7.2 Hz, 1H), 3.08 (dd, J = 13.8, 4.7 Hz, 
1H), 2.87 (dd, J = 13.7, 9.6 Hz, 1H), 2.16 (s, 3H), 1.01 
(d, J = 7.1 Hz, 3H). 13C NMR (151 MHz, DMSO-d6): δ 
173.30, 172.38, 165.59, 156.00, 148.85, 147.52, 139.67, 
139.05, 137.89, 136.01, 131.79, 131.35, 129.66, 129.63, 
128.58, 128.52, 128.34, 127.22, 127.04, 126.84, 126.31, 
111.09, 53.67, 49.07, 37.34, 18.41, 18.11. ESI-HRMS 
calcd. For C29H24BrCl2N6O5: [M−H]− 685.0369, found 
685.0366.

{2‑[3‑Bromo‑1‑(3‑chloropyr idin‑2‑yl)‑1H‑pyra‑
zole‑5‑carboxamido]‑5‑chloro‑3‑methylbenzoyl}‑l‑ala‑
nyl‑l‑tyrosine (5k)  White solid in 88% yield; 1H NMR 
(600 MHz, DMSO-d6): δ 12.68 (s, 1H), 10.24 (s, 1H), 9.18 
(s, 1H), 8.48 (dd, J = 4.6, 1.5 Hz, 1H), 8.31 (s, 1H), 8.15 
(d, J = 8.1 Hz, 1H), 8.07 (dd, J = 63.5, 8.0 Hz, 1H), 7.60 
(dd, J = 8.1, 4.7 Hz, 1H), 7.49 (s, 1H), 7.41 (dd, J = 11.6, 
2.5 Hz, 1H), 7.38 (d, J = 5.1 Hz, 1H), 6.99 (dd, J = 8.3, 4.9 
Hz, 2H), 6.62 (t, J = 8.3 Hz, 2H), 4.39–4.30 (m, 2H), 2.91 
(dd, J = 13.9, 5.3 Hz, 1H), 2.78 (ddd, J = 36.8, 13.9, 8.8 Hz, 
1H), 2.16 (s, 3H), 1.09 (dd, J = 65.8, 7.1 Hz, 3H). 13C NMR 
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(151 MHz, DMSO-d6): δ 173.27, 172.45, 165.78, 156.31, 
156.08, 148.81, 147.52, 139.67, 139.13, 136.08, 131.81, 
131.67, 130.54, 128.31, 127.81, 127.26, 127.05, 126.24, 
115.44, 115.36, 111.12, 79.55, 54.28, 54.04, 49.07, 40.39, 
18.15, 18.09. ESI-HRMS calcd. For C29H24BrCl2N6O6: 
[M−H]− 701.0318, found 701.0311.

Determination of phloem mobility
Plant materials
Castor bean seeds (Ricinus communis L.) No. 9 were pur-
chased from the Agricultural Science Academy (Zibo, 
China) and nurtured in wet absorbent cotton for 24 h at 
27 ± 1 °C prior to sowing in vermiculite watered with tap 
water. Seedlings were grown at 27 ± 1 °C and 80% ± 5% 
RH during the photoperiod (14 h) for 6 days.

Screening of phloem mobility
The already described procedure [30] was utilized to the 
phloem sap collection. After endosperms being carefully 
stripped off, cotyledons were incubated in buffered solu-
tion containing 20 mM 4-morpholineethanesulfonic acid 
(MES) (pH = 5.0), 0.25 mM MgCl2, and 0.5 mM CaCl2 for 
0.5 h, then immediately transferred to a new MES culture 
fluid containing 100 μM of the test compounds. After the 
cotyledons were incubated for 2 h, the hypocotyls were 
severed in the hook region for phloem exudation, and the 
phloem sap was continually collected for 2 h.

Analytical methods
After dilution with methanol (phloem sap/metha-
nol = 1:4, v/v), the collected phloem sap was analyzed on 
high-performance liquid chromatograph (HPLC, Agilent 
1290 series) equipped with a UV detector at 210 nm. Sep-
arations were done on a SB-C18 reversed-phase column 
(5 μm, 250 × 4.6 mm i.d.; Agilent) with a flow rate of 1.0 
mL/min at 30 °C, and the eluent was made of acetonitrile 
and water containing 0.1% trifluoroethanoic acid (TFA). 
The calibration curves of the test compounds (ranging 
from 0 to 100 μM) were linear.

Calculation of physicochemical properties
The physicochemical properties of all conjugates and 
chlorantraniliprole, including ionization constant in 
aqueous solution (pKa) and octanol/water partitioning 
coefficient (log Ko/w), were predicted by ACD LogD soft-
ware suite version 14.0 [31].

Biological assay in vitro
The insecticidal activities of compounds 4g and 5g 
against Plutella xylostella L. and Spodoptera exigua were 
tested according to literature [6], and the insecticidal 
activity of chlorantraniliprole was also tested as positive 

control. Leaf-disc dipping assays were employed with 
petri dishes kept in incubator at 26 °C and 85% relative 
humidity under a photoperiod of 16 h:8 h (light/dark). 
Mortalities were checked after treated for 48 h.

Results and discussion
Phloem mobility in R. communis
Phloem mobilities of all dipeptide conjugates were stud-
ied in R. communis, which is an ideal model to investigate 
the phloem mobility of xenobiotics [10, 12, 32]. An inter-
esting observation was that the methyl ester structure on 
compounds 4a–k were mostly hydrolyzed to their corre-
sponding acidic conjugates during the uptake and trans-
port process in planta. When R. communis cotyledons 
were treated with dipeptide methyl ester conjugates 4a–
k, the concentrations of tested compound in phloem sap 
were close to the limit of detection, and only correspond-
ing dipeptide conjugates 5a–k were detected by HPLC. 
Therefore, the phloem mobility of the dipeptide methyl 
ester conjugates 4a–k was represented by the amount of 
corresponding dipeptide conjugates being detected.

Results from systemicity tests demonstrated that the 
non-phloem-mobile chlorantraniliprole could acquire 
phloem mobility by conjugating with dipeptide or dipep-
tide methyl ester structures. As shown in Fig. 1, both the 
dipeptide methyl ester conjugates 4a–k and correspond-
ing dipeptide conjugates 5a–k were able to be absorbed 
by cotyledons of R. communis, while the parent insec-
ticide chlorantraniliprole could not be detected in the 
phloem sap. Especially, the concentrations of compounds 
4a–k in phloem sap (in forms of hydrolysis products) 
were generally higher than that of corresponding dipep-
tide conjugates 5a–k. In particular, compound 4g rep-
resented the highest concentration (114.49 ± 11.10 μM) 
under the existing experimental conditions in the form 
of its hydrolysis product 5g, which has exceeded its con-
centration in incubation solution (100 μM). There was no 
significant difference between the detected concentra-
tions of 4b, 4c, 4d, 4f, 4h, 4i, all of which were signifi-
cantly lower than that of conjugate 4g.

In addition to the difference between acids and 
esters, the side chain groups on dipeptide residues also 
showed effects on phloem mobility of dipeptide-chl-
orantraniliprole conjugates. By comparing the differ-
ence between the uptake amounts of the conjugates, 
it was found that the substituent R at the α position in 
the amino acid structure was related to the transport of 
the conjugate in plants. When R = methyl, the conjugate 
showed the best phloem mobility. When the size of sub-
stituent group gradually increase, the phloem mobility 
of the conjugate would decrease. The conjugates carry-
ing aromatic rings on the side chain, such as 4j and 4k, 
exhibited the lowest concentration in the phloem sap. It 
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demonstrated that the dipeptides with aromatic ring on 
the side chain was less effective on improving the phloem 
uptake.

Predicted phloem mobility
Our previous research indicated that the phloem mobil-
ity of pesticide-nutrient conjugates could be influ-
enced by their physicochemical properties and affinities 
with active carrier systems, which can affect the effi-
ciency of passive diffusion and active transportation 
respectively [6, 8, 11]. In order to further interpret the 
structure-phloem mobility relationship of dipeptide-
chlorantraniliprole conjugates, their physicochemical 
properties were first calculated and analyzed. For each 
conjugate, ionization constant in aqueous solution (pKa) 
and octanol/water partitioning coefficient (log Ko/w) were 
predicted (Table 1).

Results showed no obvious correlation between phloem 
systemicity and log Ko/w values. Compared to the signifi-
cant differences among phloem mobilities of conjugates, 
the range fluctuation of log Ko/w values was small. The 
pKa and log Ko/w values were then fitted in Kleier model, 
which was widely applied to predict the phloem mobility 
of xenobiotics [33, 34]. As shown in Fig. 2, the data points 
for all dipeptide ester conjugates 4a–k were located in 

non-phloem-mobile area, which was not consistent with 
the experimental data. It was speculated that dipeptide 
derivatives were loaded into the phloem of plants via 
pathways other than passive diffusion, possibly with the 
participation of dipeptide transporters [35]. Although 
some of the dipeptide acid conjugates (5a, 5b, 5e, 5g, 5f, 
and 5i) showed data points located in phloem-mobile 
area, their phloem uptake was not significantly improved 
compared with the ones located in non-phloem-mobile 
area. This indicated that passive diffusion could help the 
conjugates to penetrate into phloem tissue [11], but was 
not the major route for the uptake process. In summary, 
active transport may play a dominant role in the uptake 
and transport of dipeptide conjugates. It is possible that 
by linking dipeptide fragments with pesticide structure, 
the conjugates will be able to bind with dipeptide trans-
porters, and thus process phloem mobility.

Insecticidal activity
Insecticidal activities of compound 4g, which repre-
sented the highest phloem mobility in R. communis, 
and its hydrolysis product 5g were tested against Plu‑
tella xylostella L. and Spodoptera exigua according to 
methods reported in literature [36]. The insecticidal 
activity of chlorantraniliprole was also tested as positive 

Fig. 1  Concentrations of different dipeptide conjugates in phloem sap of Ricinus communis. Cotyledons were incubated in incubation solution 
contain 100 μM of tested compound. The phloem sap collection started 30 min after pre-incubation and lasted for 2 h. Duncan’s multiple-range 
tests at a 5% probability level were used to determine statistical differences among treatments (P < 0.05). Ch chlorantraniliprole, ND not detected. 
The data (mean ± SE, n = 10) with a column topped by different letters are significantly different from each other
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control. As shown in Table  2, both compounds 4g and 
5g maintained good biological activity against Plutella 
xylostella L. and Spodoptera exigua comparable to chlo-
rantraniliprole. Compared to compound 4g, compound 
5g showed significantly better control effect against Plu‑
tella xylostella L. and similar insecticidal activity against 
Spodoptera exigua. Considering the compound 4g could 
be hydrolyzed into the compound 5g and accumulate in 
phloem sap during the transportation process in planta, 
application of the ester conjugate 4g could potentially 
decrease the usage of pesticides while showing similar 
control effect on sucking pests compared to commercial 
chlorantraniliprole.

Conclusion
In summary, 22 new dipeptide-chlorantraniliprole con-
jugates were synthesized via simple synthetic route. All 
derivatives have acquired phloem mobility in R. commu‑
nis compared to non-phloem-mobile chlorantraniliprole, 
which proved that dipeptides could be another option 
for promoiety when designing new phloem-mobile pes-
ticides. The uptaken amounts of most dipeptide ester 
conjugates in phloem were better than that of cor-
responding dipeptide conjugates, while the dipeptide 

esters would be hydrolyzed to corresponding dipeptides 
during the uptake or transportation process. In particu-
lar, compound 4g that conjugated with alanyl-alanine 
dipeptide fragment showed the highest phloem mobility 
among all conjugates, and could lead to high concentra-
tion of 5g in phloem sap which exceeded its concentra-
tion in incubation solution. Bioassay results showed that 
the control effects of 4g and 5g against Plutella xylos‑
tella L. and Spodoptera exigua were comparable to that 
of chlorantraniliprole. Thus, application of compound 

Table 1  Molecular weights, log Ko/w, and pKa of compounds 
4a–5k 

Compounds Molecular weight 
(g/mol)

Log Ko/w pKa

4a 598.23 3.48 10.33 ± 0.7

4b 612.26 3.72 10.33 + 0.7

4c 654.34 4.5 10.33 + 0.7

4d 640.31 4.28 10.33 + 0.7

4e 628.26 3.04 10.33 ± 0.7

4f 612.26 3.72 10.33 ± 0.7

4g 626.29 4.06 10.33 ± 0.7

4h 686.4 4.6 10.33 ± 0.7

4i 684.32 4.47 10.33 ± 0.7

4j 702.38 5.94 10.33 ± 0.7

4k 718.38 5.21 9.75 ± 0.15

5a 584.21 1.04 3.29 ± 0.1

5b 598.23 1.37 3.38 ± 0.1

5c 640.31 2.42 3.36 ± 0.1

5d 626.29 1.88 3.32 ± 0.1

5e 614.23 0.3 2.97 ± 0.1

5f 598.23 1.29 3.3 ± 0.1

5g 612.26 1.71 3.39 ± 0.1

5h 672.38 2.26 3.21 ± 0.1

5i 656.27 0.02 2.85 ± 0.1

5j 688.36 3.06 3.49 ± 0.1

5k 704.36 2.29 3.07 ± 0.1
Fig. 2  Predication of phloem mobility of dipeptide conjugates via 
the Kleier map (log Cf as a function of log Ko/w and pKa). Log Ko/w and 
pKa were calculated by ACD LogD suite v.14.0 software

Table 2  Insecticidal activities of  compounds 4g, 5g 
and  chlorantraniliprole (50 mg/L) against  Plutella 
xylostella L. and Spodoptera exigua in 48 h

Test concentration was 50 mg/L. Duncan tests at a 5% probability level were 
used to determine statistical differences among treatments (P < 0.05)

Compounds Mortality (%)

Plutella xylostella L. Spodoptera exigua

4g 54.58 ± 3.03a 76.21 ± 7.63a

5g 87.58 ± 2.89b 83.57 ± 4.46ab

Chlorantraniliprole 91.67 ± 4.81b 97.22 ± 2.78b
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4g could potentially lead to better in vitro control effect 
compared to chlorantraniliprole. Further research on the 
uptake mechanism of dipeptide-chlorantraniliprole con-
jugates and its affinity with dipeptide transporters is still 
in progress.
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