Facile synthesis and antiproliferative activity of new 3-cyanopyridines

Hassan M. Abdel-aziz¹, Sobhi M. Gomha ${ }^{2,3^{*}}$ © , Abdelaziz A. El-Sayed ${ }^{3,4}$, Yahia Nasser Mabkhot ${ }^{5 *}$, Abdulrhman Alsayari ${ }^{6}$ and Abdullatif Bin Muhsinah ${ }^{6}$

Abstract

Background: Pyridines have been reported to possess various pharmacological activities. Results: Sodium 3-oxo-3-(2-oxo-2H-chromen-3-y) prop-1-en-1-olate (2) and sodium 3-oxo-3-(3-oxo-3H-benzo[f] chromen- 2 -yl)prop-1-en-1-olate ($\mathbf{7}$) were prepared and reacted with 2-cyano- N^{\prime}-(1 -aryl (heteryl)ethylidene)acetohydrazides 3a-d to produce 2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives $\mathbf{5 a - d}$ and $\mathbf{9 a}$-d, respectively, in good yields. Also, 3a-d reacted with sodium (2-oxocyclopentylidene)methanolate (11a) or sodium (2-oxocyclohexylidene) methanolate (11b) to yield 2-oxo-tetrahydro-1 H-cyclopenta[b]pyridine-3-carbonitriles 13a-d and 2-oxo-hexahyd-roquinoline-3-carbonitriles $\mathbf{1 3 e - h}$, respectively. The mechanisms that account for the formation of the products are discussed. Additionally, the structures of all the newly synthesized products are confirmed, based on elemental analysis and spectral data. Several of the newly synthesized compounds are evaluated for their antitumor activity against HEPG2 and their structure activity relationship (SAR) was studied. Conclusions: The results revealed that the pyridine derivatives $\mathbf{5 c}$ and $\mathbf{5 d}\left(\mathrm{I}_{50}=1.46,7.08 \mu \mathrm{M}\right.$, respectively) have promising antitumor activity against liver carcinoma cell line (HEPG2), compared to the reference drug, doxorubicin.

Keywords: 2-Cyanoacetohydrazide, Cyclization, 3-Pyridinecarbonitrles, 3-Quinolinecarbonitriles, Antitumor activity

Introduction

The pyridine core is a key constituent in a scope of bioactive compounds which occur artificially and naturally. It has been appeared to have a wide scope of biological applications [1-3]. Among these, substituted cyanopyridines were found to have antihypertensive [4], antipyretic, anti-inflammatory and analgesic properties [5]; cardiotonic [6], antimicrobial [7], and anticancer activities [8, 9]. Among the successful examples as drug candidates possessing the pyridine core are streptonigrone, lavendamycin and streptonigrin, which are depicted in the literature as anticancer agents. Some pyridine

[^0]derivatives were contemplated for their topoisomerase inhibitory action and cytotoxicity against a few human malignant growth cell lines, thus marking them as novel anticancer agents [10]. Accordingly, it has been accounted those different pyridine derivatives, as bioisosteres of α-terthiophene (protein kinase C inhibitor) [11], have significant topoisomerase I and II inhibitory activity and cytotoxicity against many human cancer cell lines [12-15].

Early reports on the ability of α-terpyridine to form a metal complex [16] and to bind with DNA/RNA [17] have been the reason for the investigation of pyridine derivatives as antitumor agents. In light of the above discoveries and in continuation of our endeavors to synthesize new antitumor compounds [18-27], the aim of this report is to synthesize a new series of 3-pyridinecarbonitriles, which are anticipated to be active as antitumor agents.

Results and discussion

The synthetic strategies adopted for the synthesis of the intermediates and target compounds are depicted in Schemes 1, 2 and 3. In Schemes 1 and 2, sodium 3-oxo-3-(2-oxo-2H-chromen-3-yl)prop-1-en-1-olate (2) and sodium 3-oxo-3-(3-oxo-3H-benzo[f]chromen-2-yl)prop-1-en-1-olate (7) were prepared from a reaction of the respective 2 -acetyl-3H-benzo[f]chromen-3-one (1) or 2-acetyl-3H-benzo[f]chromen-3-one (6) with ethyl formate in dry ether containing sodium methoxide, according to reported methods [28]. The structures of 2 and 7 were confirmed by chemical transformations.
The treatment of sodium salt 2 or 7 with the appropriate 2 -cyano- N^{p}-(1-aryl(heteryl) ethylidene)acetohydrazides 3a-d [29-31] in acetic acid containing piperidine acetate afforded products $\mathbf{5 a - d}$ and $9 \mathbf{9}-\mathbf{d}$, respectively, in good yields (Schemes 1 and 2).
The structures of the reaction products $\mathbf{5 a - d}$ and 9 a-d were established and confirmed by their elemental analysis and spectral data (MS, IR, ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}$). Thus, the structure of $\mathbf{5 a}$ is supported by its mass spectrum, which showed a molecular ion corresponding to the formula $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}^{+}, 381\right)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed characteristic signals at $\delta=2.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.02-7.88 (m, 9H, Ar-H), 7.96 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), 8.33 (d, 1H, J=4.8 Hz, pyridine-H4), 9.22 (s, 1H, Coumarin-H4) ppm. Its IR spectrum showed the characteristic bands at $v=2226(\mathrm{CN}), 1725,1673$ $(2 \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$.
To account for the formation of the products 5a-d and $\mathbf{9 a}-\mathbf{d}$, it is suggested that the studied reactions started with a nucleophilic attack by the methylene group of compound 3 at the formyl group of compound 2 or 7, which formed in situ due to the reaction of the formyl salts with water. This resulted in the formation of the non-isolable intermediate 4 or 8 , followed by cyclization through the elimination of the water molecule, leading to the formation of the final pyridine derivatives 5 or 9 (Schemes 1 and 2).
Similarly, the 2 -cyano- N-(1-substituted ethylidene) acetohydrazides $\mathbf{3 a - d}$ reacted with the appropriate sodium (2-oxocyclopentylidene)methanolate (11a) [32] or sodium 2-oxocyclohexylidene)methanolate (11b) [32] in acetic acid containing piperidine acetate to give 2-oxo-1-((1-aryl(heteryl)ethylidene)amino)$1 H$-cycloalkana[b]pyridine-3-carbonitrile derivatives $\mathbf{1 3 a}-\mathbf{h}$, respectively (Scheme 3). The structure of 13a-d has been assigned as a reaction product on the basis of analytical and spectral data. The IR spectrum displayed absorption bands at $2227 \mathrm{~cm}^{-1}$ due to $\mathrm{C} \equiv \mathrm{N}$ function, at $1670 \mathrm{~cm}^{-1}$ due to amidic $\mathrm{C}=\mathrm{O}$ function. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($\mathrm{DMSO}-d_{6}$) exhibited one singlet signal at $\delta=2.41 \mathrm{ppm}$ assignable to methyl protons, multiplet
signals at $\delta=1.27-1.85\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 2.18-2.26(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.75$ (m, $1 \mathrm{H}, \mathrm{CH}$), in addition to a multiplet signal at $\delta 7.24-$ 7.75 ppm , due to aromatic protons. The mass spectrum showed a molecular ion peak at $m / z=281$, corresponding to the molecular formula $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$.
As depicted in Scheme 3, the formation of $\mathbf{1 0}$ seems to start with an initial attack by a carbanion of the active methylene compound 3 to the formyl group of the salt 11, which formed in situ due to the reaction of the formyl salts 11 with water, forming. Subsequent enolization followed by elimination of water led to product 13.

Antitumor activity

The antitumor activity of compounds 5a-d, 9a-d and 13a-d was determined against a liver carcinoma cell line, HEPG2. Doxorubicin was utilized as a reference drug and showed $\mathrm{IC} 50=0.72 \mu \mathrm{M}$ against this liver carcinoma cell line. Collected data were used to plot a dose-response curve, of which the concentration ($\mu \mathrm{M}$) of the tested compounds required to kill of 50% of the cell population $\left(\mathrm{IC}_{50}\right)$. Antitumor activity was expressed as the mean IC_{50} of three different experiments.
The outcomes showed that the vast majority of the tested compounds demonstrated extraordinary variable activity contrasted with the reference drug, as shown in Table 1 and Fig. 1. The descending order of activity of the new compounds was as follows: 5c>5d>5a>13c>5b>9a> $\mathbf{9 b}>\mathbf{9 d}>13 d>13 a>13 b$.
Examination of the SAR leads to the following conclusions.
The pyridine derivatives $\mathbf{5 c}$ and $\mathbf{5 d} \quad\left(\mathrm{IC}_{50}=1.46\right.$, $7.08 \mu \mathrm{M}$, respectively) demonstrated potent antitumor activity against HEPG2, while pyridines 5a, 9c, 13c, 5b, 9a, showed moderate activity ($\mathrm{IC}_{50}=22.3-42.8 \mu \mathrm{M}$). The remaining pyridines showed poor antitumor activity against this liver carcinoma cell line ($\mathrm{IC}_{50}>65 \mu \mathrm{M}$).

The pyridine derivatives having coumarine ring $\mathbf{5 a - d}$ exhibited more anticancer activity than pyridines having naphthocoumarine ring $\mathbf{9 a}-\mathbf{d}$ while the latter pyridines 9a-d exhibited more activity than cyclopenta[b]pyridines 13a-d.

Experimental section

Melting points were recorded in open capillaries using an electrothermal Gallenkamp apparatus and are uncorrected. Elemental analyses were carried out by the microanalytical center at Cairo University. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO- d_{6} on a Bruker DRX NMR spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shift (δ) values are expressed in ppm and are referenced to the residual solvent signals of DMSO- d_{6}.

5a-d: 78-83\%
Scheme 1 Synthesis of pyridine-3-carbonitriles 5a-d

The mass spectra were recorded on GCMSQ1000-EX Shimadzu spectrometers. The IR spectra were measured on a Pye-Unicam SP300 instrument.

Synthesis of the sodium salt

of 3-(3-hydroxyprop-2-enoyl)-2H-chromen-2-one
(4) and the sodium salt
of 2-(-3-hydroxyprop-2-enoyl)-3H-benzo[f]chromen-3-one (7)

Sodium methoxide ($0.054 \mathrm{~g}, 10 \mathrm{mmol}$) and ether $(20 \mathrm{~mL})$ were poured through a separating funnel to a three-necked flask (250 mL), then the appropriate

3-acetyl-2H-chromen-2-one (1) or 2-acetyl-3H-benzo[f] chromen-3-one (6) (10 mmol of each) and ethyl formate ($0.74 \mathrm{~g}, 10 \mathrm{mmol}$) were added and stirred. The formed solid products 4 and 7 were collected via filtration and used directly in the following reactions.

Synthesis of 2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives 5a-d and 9a-d

An aqueous solution of $\mathbf{4}$ or 7 (10 mmol of each), the appropriate cyanoacetic acid hydrazones $\mathbf{3 a}-\mathbf{d}(10 \mathrm{mmol})$ and piperidine acetate (1 mL) was refluxed for 10 min , then acetic acid $(1.5 \mathrm{~mL})$ was added to the hot solution.

6

8B

3,9	R
a	$\mathrm{C}_{6} \mathrm{H}_{5}$
C	

9a-d: 76-82\%

Scheme 2 Synthesis of pyridine-3-carbonitriles 9a-d

The formed product was separated and recrystallized from the suitable solvent to yield products $\mathbf{5 a - d}$ or $\mathbf{9 a - d}$. The analytical data of the obtained products $5 \mathbf{5}-\mathbf{d}$ and $\mathbf{9 a - d}$ are listed below:

2-Oxo-6-(2-oxo-2H-chromen-3-yl)-1-((1-phenylethylidene) amino)-1,2-dihydropyridine-3-carbonitrile (5a)
Yield 81%; yellow solid; mp $182-184{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3038, 2926 (C-H), 2226 (CN), 1725, 1673 (2C=O), $1603(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 2.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.02-7.88 (m, 9H, Ar-H), 7.96 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), 8.33 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine- H 4), 9.22 (s, 1 H , Coumarin-H4) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 18.3$
$\left(\mathrm{CH}_{3}\right), 96.7,116.3,118.5,120.3,123.6,126.2,127.6,127.9$, $128.4,129.0,129.6,132.6,134.3,134.8,142.5,147.1$, 156.4, 158.0.2 (Ar-C), 162.4, $163.1(2 \mathrm{C}=\mathrm{O}) \mathrm{ppm} ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%): 381 ($\mathrm{M}^{+}, 25$), 352 (69), 203 (81), 104 (85), 64 (100). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (381.38): C, 72.43; H, 3.96; N, 11.02. Found C, 72.31; H, 3.89; N, 10.96.

2-Oxo-6-(3-oxo-3H-benzo[f]
chromen-2-yl)-1-[(1-phenylethylidene) amino]-1,2-dihydropyridine-3-carbonitrile (5b)
Yield 83%; yellow solid; mp 206-208 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (KBr): v 3027, 2929 (C-H), 2227 (CN), 1727, 1673 (2C=O), $1601(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}\right): \delta 2.31$ (s, 3H,

10a,b
a, $\mathrm{X}=\mathrm{CH}_{2}$;
b, $\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2}$

13	X	R	13	X	R
a	CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$	e	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$
b	CH_{2}	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	f	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
c	CH_{2}		g	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	
d	CH_{2}		h	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	

Scheme 3 Synthesis of pyridine-3-carbonitriles 13a-h
CH_{3}), 2.42 (s, 3H, CH_{3}), 7.13-7.80 (m, 8H, Ar-H), 7.90 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.26(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H4), 9.12 (s, 1 H , Coumarin-H4) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 18.0,22.4\left(\mathrm{CH}_{3}\right), 94.7,117.5,119.3,120.2$, 121.9, 124.8, 125.0, 127.3, 127.7, 128.8, 129.1, 130.2,
132.6, 133.8, 140.2, 149.2, 155.1, 157.9 (Ar-C), 162.0, $164.2(2 \mathrm{C}=\mathrm{O}) \mathrm{ppm} ; \mathrm{MS} \mathrm{m} / z(\%): 395\left(\mathrm{M}^{+}, 18\right), 315$ (37), 203 (58), 91 (80), 64 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (395.41): C, 72.90; H, 4.33; N, 10.63. Found C, 72.98; H, 4.27; N, 10.51.

Table 1 Cytotoxic activities of tested compounds against liver carcinoma cell line (HEPG2)

Compd no.

The most active compounds are in italic

2-Oxo-6-(2-oxo-2H-chromen-3-yl)-1-((1-(2-oxo-2H-chromen -3-yl)ethylidene)amino)-1,2-dihydropyridine-3-carbonitrile (5c)
Yield 78%; yellow solid; mp $231-233{ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3044, 2936 (C-H), 2229 (CN), 1733, 1728, 1677 $(3 \mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta$ $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.39-7.93(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}$, $J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.13(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridineH4), 9.12, 9.23 ($2 \mathrm{~s}, 2 \mathrm{H}, 2$ Coumarin-H4) ppm; MS m/z (\%): $449\left(\mathrm{M}^{+}, 52\right), 362$ (47), 250 (61), 144 (85), 91 (100), 64 (79). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ (449.41): C, 69.49; H, 3.36; N, 9.35. Found C, 69.31; H, 3.17; N, 9.19.

2-Oxo-6-(2-oxo-2H-chromen-3-yl)-1-((1-(3 -oxo-3H-benzo[f]chromen-2-yl)ethylidene) amino)-1,2-dihydropyridine-3-carbonitrile (5d)
Yield 80\%; yellow solid; mp 244-246 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3047, 2922 (C-H), 2221 (CN), 1729, 1718, 1670 $(3 \mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta$ 2.37 (s, 3H, CH3), 7.16-7.88 (m, 10H, Ar-H), 7.92 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.26(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyr-idine-H4), 8.93 (s, 1H, Naphthocoumarin-H4), 9.25 (s, 1H, Coumarin-H4) ppm; MS m/z (\%): 499 ($\mathrm{M}^{+}, 14$), 382 (39), 218 (100), 173 (70), 91 (67), 64 (58). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ (499.47): C, $72.14 ; \mathrm{H}, 3.43 ; \mathrm{N}, 8.41$. Found C, 72.03; H, 3.26; N, 8.28.

2-Oxo-6-(3-oxo-3H-benzo[f]
chromen-2-yl)-1-((1-phenylethylidene)
amino)-1,2-dihydropyridine-3-carbonitrile (9a)
Yield 77\%; yellow solid; mp 206-208 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3051, 2929 (C-H), 2226 (CN), 1723, 1670 (2C=O), $1602(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 7.25-7.81(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.96(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), 8.28 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine- H 4), 8.93 (s, 1H, Naphthocoumarin-H4) ppm, ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right): \delta 18.8\left(\mathrm{CH}_{3}\right), 95.8,103.7,116.7,119.5,121.0,122.7$, 123.7, 126.1, 127.2, 127.7, 128.0, 128.6, 129.1, 130.4, $131.4,132.6,134.0,134.5,145.9,155.3,157.6$ (Ar-C), 162.1, $164.3(2 \mathrm{C}=\mathrm{O}) \mathrm{ppm} ; \mathrm{MS} \mathrm{m/z}(\%): 431\left(\mathrm{M}^{+}, 36\right), 306$ (58), 218 (36), 139 (42), 91 (77), 64 (100). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (431.44): C, 75.16; H, 3.97; N, 9.74. Found C, 75.03; H, 3.91; N, 9.59.

2-Oxo-6-(3-oxo-3H-benzo[f]chromen-2-yl)-1-((1-(p-tolyl) ethylidene)amino)-1,2-dihydropyridine-3-carbonitrile (9b)
Yield 82%; yellow solid; mp $222-224{ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3041, 2935 (C-H), 2218 (CN), 1733, 1682 (2C=O), 1601 $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.43 (s, 3H, CH ${ }_{3}$), 7.17-7.81 (m, 10H, Ar-H), 7.95 (d, 1H, $J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.41(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridineH4), 8.94 (s, 1H, Naphthocoumarin-H4) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 18.4,22.7\left(\mathrm{CH}_{3}\right), 94.7,105.9,117.0,120.4$, $120.9,121.4,122.0,124.8,126.3,127.0,128.7,128.6$, 129.8, 131.4, 131.8, 133.6, 135.3, 136.0, 142.6, 151.4, 155.3 (Ar-C), 163.6, 165.1 (2C=O) ppm; MS m/z (\%): 445 (${ }^{+}$, 100), 341 (36), 265 (54), 182 (74), 64 (83). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (445.47): C, 75.49; H, 4.30; N, 9.43. Found C, 75.32; H, 4.16; N, 9.27.

2-Oxo-1-((1-(2-oxo-2H-chromen-3-yl) ethylidene)amino)-6-(3-oxo-3H-benzo[f] chromen-2-yl)-1,2-dihydropyridine-3-carbonitrile (9c)
Yield 80%; brown solid; mp $231-233{ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3040, 2961 (C-H), 2223 (CN), 1739, 1726, 1675 $(3 \mathrm{C}=\mathrm{O}), 1597(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta$

Phenyl group exhibted more
anticancer activity than tolyl group

- Coumarine ring exhibted more anticancer activity than naphthocoumarine ring
Coumarine ring exhibted more anticancer activity than naphthocoumarine ring

Fig. 1 Cytotoxic activities of tested compounds against liver carcinoma cell line
2.41 (s, 3H, CH3), 7.27-7.93 (m, 10H, Ar-H), 8.03 (d, $1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.38(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyr-idine-H4), 8.97 (s, 1H, Naphthocoumarin-H4), 9.13 (s, 1H, Coumarin-H4) ppm; MS m/z (\%): 499 ($\mathrm{M}^{+}, 36$), 360 (51), 218 (100), 154 (73), 104 (55), 64 (81). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$ (499.47): C, $72.14 ; \mathrm{H}, 3.43 ; \mathrm{N}, 8.41$. Found C, 72.01; H, 3.25; N, 8.27.

2-Oxo-6-(3-oxo-3H-benzo[f]chromen-2-yl)-1-((
1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)
amino)-1,2-dihydropyridine-3-carbonitrile (9d)
Yield 76%; brown solid; mp $271-273{ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3042, 2938 (C-H), 2229 (CN), 1736, 1729, 1676 $(3 \mathrm{C}=\mathrm{O}), 1607(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 2.44$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.41-7.95 (m, 12H, Ar-H), 8.12 (d, 1 H , $J=4.8 \mathrm{~Hz}$, pyridine-H5), $8.46(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}$, pyridineH4), 8.89, 8.93 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{Naphthocoumarin-H4)} \mathrm{ppm:}$ MS m / z (\%): 549 ($\mathrm{M}^{+}, 22$), 315 (62), 288 (67), 154 (100), 91 (38), 64 (77). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ (549.53): C, 74.31 ; H, 3.48; N, 7.65. Found C, 74.18; H, 3.29; N, 7.44.

Synthesis of sodium salt of cycloalkanones 11a, b

In a three-necked flask (250 mL), sodium methoxide ($0.054 \mathrm{~g}, 10 \mathrm{mmol}$) and ether (20 mL) were poured through a separating funnel, the appropriate cyclopentanone (10a) or cyclohexanone (10b) (10 mmol of each) with ethyl formate ($0.74 \mathrm{~g}, 10 \mathrm{mmol}$) were added, and then stirred. The formed solid products 11a and 11b were collected and used directly in the following reactions.

Synthesis of 2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives 13a-h

A solution of 11a or 11b (10 mmol of each), the appropriate cyanoacid hydrazones $\mathbf{3 a - d}(10 \mathrm{mmol})$ and piperidine acetate (1 mL) in water (3 mL) was refluxed for 10 min . Acetic acid (1.5 mL) was added to the hot solution. The solid product was filtered off and recrystallized from the proper solvent to give products 13a-h. The physical constants and spectral data of the obtained products 13a-h are listed below:

2-Oxo-1-((1-phenylethylidene)amino)

octahydro-1H-cyclopenta[b]pyridine-3-carbonitrile (13a)
Yield 73\%; yellow solid; mp 204-206 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3033, 2925 (C-H), 2227 (CN), 1670 (C=O), 1607 $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.27-1.85(\mathrm{~m}, 8 \mathrm{H}$, $\left.4 \mathrm{CH}_{2}\right), 2.18-2.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.42$ (m, 1H, CH), 3.75 (m, 1H, CH), 7.24-7.75 (m, 5H, ArH) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 23.7,25.3,28.5,33.4,34.9$, 36.3, 41.1, 62.0, 95.8, 125.3, 126.2, 129.1, 134.4, 160.3, $171.6 \mathrm{ppm} ; \mathrm{MS} m / z(\%): 281\left(\mathrm{M}^{+}, 16\right), 203$ (40), 127 (100), 91 (48), 64 (52). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ (281.35): C, $72.57 ; H, 6.81 ; ~ N, 14.94$. Found C, $72.42 ; \mathrm{H}, 6.69$; N, 14.70.

2-Oxo-1-((1-(p-tolyl)ethylidene)amino)

octahydro-1H-cyclopenta[b]pyridine-3-carbonitrile (13b)
Yield 75%; yellow solid; mp 193-195 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3027, 2948 (C-H), 2221 (CN), 1675 (C=O), 1602 $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.23-1.87(\mathrm{~m}, 8 \mathrm{H}$,
$\left.4 \mathrm{CH}_{2}\right), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.36(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.69 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$) ppm; MS m/z (\%): 295 (${ }^{+}, 28$), 229 (36), 174 (72), 91 (100), 64 (83). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ (295.38): C, 73.19; H, 7.17; N, 14.23. Found C, 73.03; H, 7.06; N, 14.03.

2-Oxo-1-((1-(2-oxo-2H-chromen-3-yl)ethylidene)amino) octahydro-1H-cyclopenta[b] pyridine-3-carbonitrile (13c)
Yield 77\%; brown solid; mp 247-249 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3051, $2922(\mathrm{C}-\mathrm{H}), 2232(\mathrm{CN}), 1728,1670(2 \mathrm{C}=\mathrm{O}), 1601$ $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.29-1.88(\mathrm{~m}, 8 \mathrm{H}$, $4 \mathrm{CH}_{2}$), 2.07-2.15 (m, 1H, CH), $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.46$ (m, 1H, CH), 3.79 (m, 1H, CH), 7.52-7.86 (m, 4H, ArH), 8.75 (s, 1 H , Coumarin-H4) ppm; MS m/z (\%): 349 (M^{+}, 35), 262 (37), 183 (100), 91 (85), 64 (60). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (349.38): C, 68.75; H, 5.48; N, 12.03. Found C, 68.83; H, 5.35; N, 11.84.

2-Oxo-1-((1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene) amino)octahydro-1H-cyclopenta[b]pyridine-3-carbonitrile (13d)

Yield 74\%; brown solid; mp 260-262 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3039, 2938 (C-H), 2230 (CN), 1722, 1668 (2C=O), $1604(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.32-1.90$ $\left(\mathrm{m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.36-7.88(\mathrm{~m}, 6 \mathrm{H}$, ArH), 8.56 (s, 1H, Naphthocoumarin-H4) ppm; MS m/z (\%): 399 ($\mathrm{M}^{+}, 12$), 291 (60), 183 (80), 91 (49), 64 (100). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (399.44): C, 72.16; $\mathrm{H}, 5.30$; N, 10.52. Found C, 72.03 ; H, 5.19; N, 10.33.

2-Oxo-1-((1-phenylethylidene)amino)

decahydroquinoline-3-carbonitrile (13e)

Yield 73%; yellow solid; mp 204-206 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3033, 2925 (C-H), 2227 (CN), 1670 (C=O), $1607(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.18-1.96$ (m, 10H, 5CH $), 2.04-2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.42$ (s, 3 H , CH_{3}), $3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.28-7.80$ (m, 5H, ArH) ppm; MS m/z (\%): 295 ($\mathrm{M}^{+}, 100$), 239 (43), 160 (73), 91 (63), 64 (48). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ (295.38): C, 73.19; H, 7.17; N, 14.23. Found C, 73.10; H, 7.05; N, 14.05.

2-Oxo-1-((1-(p-tolyl)ethylidene)amino) decahydroquinoline-3-carbonitrile (13f)

Yield 75%; yellow solid; mp $218-220{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (KBr): v 3053, 2940 (C-H), 2231 (CN), 1670 ($\mathrm{C}=\mathrm{O}$), $1601(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.18-1.96$ $\left(\mathrm{m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 2.04-2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.31(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) \mathrm{ppm} ;$

MS m/z (\%): 309 ($\mathrm{M}^{+}, 48$), 220 (81), 176 (46), 91 (100), 64 (49). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ (309.41): C, 73.76; H, 7.49; N, 13.58. Found C, 73.58; H, 7.40; N, 13.42.

2-Oxo-1-((1-(2-oxo-2H-chromen-3-yl)ethylidene)amino) decahydroquinoline-3-carbonitrile (13g)

Yield 71\%; brown solid; mp 237-239 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3041, 29428 (C-H), 2229 (CN), 1727, 1673 ($2 \mathrm{C}=\mathrm{O}$), $1599(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.20-1.92(\mathrm{~m}$, $\left.10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 2.05-2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.44-7.82(\mathrm{~m}, 4 \mathrm{H}$, ArH), 8.73 (s, 1 H , Coumarin-H4) ppm; MS m / z (\%): 363 ($\mathrm{M}^{+}, 100$), 259 (53), 160 (52), 91 (84), 64 (75). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ (363.41): C, 69.41; H, 5.82; $\mathrm{N}, 11.56$. Found C, 69.57; H, 5.68; N, 11.44.

2-Oxo-1-((1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene) amino)decahydroquinoline-3-carbonitrile (13h)

Yield 76\%; brown solid; mp 263-265 ${ }^{\circ} \mathrm{C}$ (DMF); IR (KBr): v 3032, 2928 (C-H), 2224 (CN), 1723, 1675 (2C=O), $1597(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 1.24-1.90(\mathrm{~m}$, $\left.10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 2.07-2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.46 (m, 1H, CH), $3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.49-7.77$ (m, 6H, ArH), 8.62 (s, 1H, Naphthocoumarin-H4) ppm; MS m/z (\%): $413\left(\mathrm{M}^{+}, 52\right), 226$ (37), 117 (64), 91 (69), 64 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ (413.47): C, 72.62; H, 5.61; $\mathrm{N}, 10.16$. Found C, $72.46 ; \mathrm{H}, 5.48$; N, 10.04.

Evaluation of the antitumor activity using Viability assay
The cytotoxic evaluation of the synthesized compounds was carried out at the Regional Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt, according to a reported method [33].

Materials and methods

Chemicals

All chemicals used in this study are of high analytical grade. They were obtained from (either Sigma-Alderich or Biorad).

Human tumor cell lines

The tumour cell lines were obtained frozen in liquid nitrogen $\left(-180{ }^{\circ} \mathrm{C}\right)$ from the American Type Culture Collection (ATCC ${ }^{\circledR} \mathrm{HB}-8065^{\mathrm{TM}}$) and was maintained at the National Cancer Institute, Cairo, Egypt, by serial sub-culturing.

Measurement of potential cytotoxic activity

The cytotoxic activity was measured in vitro on human cancer cell line (HEPG2) using Sulforhodamine-B stain (SRB) assay.

Cells were plated in 96 multi well plates for 24 h before treatment with the compounds to allow attachment of the cells to the wall of the plate.

- Different concentrations of the compound under test ($0,6.25,12.5,25,50$ and $100 \mu \mathrm{~g} / \mathrm{mL}$) were added to the cell monolayer. Triplicate wells were prepared for each individual dose.
- Monolayer cells were incubated with the compounds for 48 h at $37^{\circ} \mathrm{C}$ and in atmosphere of $5 \% \mathrm{CO}_{2}$.
- After 48 h cell was fixed, washed and stained with Sulforhodamine B stain.
- The relation between surviving fraction and drug concentration was plotted and IC_{50} (the concentration required for 50% inhibition of cell viability) was calculated for each compound by Sigma-plot software.

Conclusions

The results of the present study indicate that the cyanoacid hydrazones and sodium 3-oxo-3-heterylprop-1-en-1-olates or sodium (2-oxocycloalkylidene)methanolates are useful precursors for the synthesis of various functionalized 3-pyridinecarbonitriles. In addition, they indicate that these reactions are region-specific, as in each case, one product of good yield was produced. Most of the synthesized compounds were evaluated for their anti-cancer activity against the liver carcinoma cell lines. Also, their structure activity relationship (SAR) was studied. The results revealed that the pyridine derivatives $5 \mathbf{c}$ and $5 \mathbf{d}\left(\mathrm{IC}_{50}=1.46,7.08 \mu \mathrm{M}\right.$, respectively) have promising antitumor activity against liver carcinoma cell line (HEPG2). The prepared compounds are expected to be of pharmacological interest.

Abbreviations

TLC: thin layer chromatography; HepG2: liver carcinoma cell line; EtOH: ethanol; DMF: dimethylformamide; m.p.: melting point; IR: infra- red; ATCC: American Type Culture Collection; SAR: structure activity relationship.

Authors' contributions

SMG and YNM designed research; HMA and AA performed research; AAE performed the biological activities studies. ABM analyzed the data; HMA, SMG and YNM wrote the final manuscript. All authors read and approved the final manuscript.

Funding

The financial support by the Deanship of Scientific Research (prolific research group No R.G.P.2/23/41) King Khalid University, Saudi Arabia.

Availability of data and materials

The datasets and samples of the compounds used during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Author details

${ }^{1}$ Chemistry Department, Faculty of Science, University of Bani Suef, Bani Suef, Egypt. ${ }^{2}$ Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt. ${ }^{3}$ Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia.
${ }^{4}$ Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
${ }^{5}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia. ${ }^{6}$ Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.

Received: 27 August 2019 Accepted: 7 December 2019
Published online: 28 December 2019

References

1. Ranu BC, Jana R, Sowmiah S (2007) An improved procedure for the threecomponent synthesis of highly substituted pyridines using ionic liquid. J Org Chem 72:3152-3154
2. Abbas IM, Gomha SM, Elaasser MM, Bauomi MA (2015) Synthesis and biological evaluation of new pyridines containing imidazole moiety as antimicrobial and anticancer agents. Turk J Chem 39:334-346
3. Abdelrazek FM, Gomha SM, Shaaban MEB, Rabee KA, El- Shemy HN, Abdallah AM, Metz P (2019) One-pot three-component synthesis and molecular docking of some novel 2-thiazolylpyridines as potent antimicrobial agents. Mini Rev Med Chem 19:527-538
4. Baldwin JJ, Engelhardt EL, Hirschmann R, Ponticello GS, Atkinson JG, Wasson BK, Sweet CS, Scriabine A (1980) Heterocyclic analogues of the antihypertensive beta-adrenergic blocking agent (S)-2-[3-(ter-butylamino)-2-hydroxypropoxy]-3-cyanopyridine. J Med Chem 23:65-70
5. Manna F, Chimenti F, Bolasco A, Filippelli A, Palla A, Mercantini R (1992) Anti-inflammatory, analgesic and antipyretic 4,6-disubstituted 3-cyanopyridine-2-ones and 3-cyano-2-aminopyridines. Eur J Med Chem 27:627-632
6. Bekhit AA, Baraka AM (2005) Novel milrinone analogs of pyridine-3-carbonitrile derivatives as promising cardiotonic agents. Eur J Med Chem 40:1405-1413
7. Abdel-Aziz AAM, El-Subbagh HI, Kunieda T (2005) Lewis acid-promoted transformation of 2-alkoxypyridines into 2-aminopyridines and their antibacterial activity. Part 2: remarkably facile C-N bond formation. Bioorg Med Chem 13:4929-4935
8. El-Sayed HA, Moustafa AH, Haikal AEFZ, Abu-El-Halawa R, El Ashry ESH (2011) Synthesis, antitumor and antimicrobial activities of 4-(4-chlorophe-nyl)-3-cyano-2-(β-O-glycosyloxy)-6-(thien-2-yl)-nicotinonitrile. Eur J Med Chem 46:2948-2954
9. Malki A, Mohsen M, Aziz H, Rizk O, Shaaban O, El-Sayed M, Sherif ZA, Ashour H (2016) New 3-Cyano-2-substituted pyridines induce apoptosis in MCF 7 breast cancer cells. Molecules 21:230
10. Thapa P, Karki R, Choi HY, Choi JH, Yun M, Jeong BS, Jung MJ, Nam JM, Na Y, Cho WJ, Kwon Y, Lee E-S (2010) Synthesis of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship. Bioorg Med Chem 18:2245-2254
11. Xu WC, Zhou Q, Ashendel CL, Chang CT, Chang CJ (1999) Novel protein kinase C inhibitors: synthesis and PKC inhibition of β-substituted polythiophene derivatives. Bioorg Med Chem Lett 9:2279-2282
12. Zhao LX, Moon YS, Basnet A, Kim EK, Jahng Y, Park JG, Jeong TC, Cho WJ, Choi SU, Lee CO, Lee SY, Lee CS, Lee ES (2004) The discovery and synthesis of novel adenosine receptor ($\mathrm{A}_{2 \mathrm{~A}}$) antagonists. Bioorg Med Chem Lett 14:1333-1336
13. Zhao LX, Sherchan J, Park JK, Jahng Y, Jeong BS, Jeong TC, Lee CS, Lee ES (2006) Synthesis, cytotoxicity and structure-activity relationship study of terpyridines. Arch Pharm. Res 29:1091-1095
14. Son JK, Zhao LX, Basnet A, Thapa P, Karki R, Na Y, Jahng Y, Jeong TC, Jeong BS, Lee CS, Lee ES (2008) Synthesis of 2,6-diaryl-substituted pyridines and their antitumor activities. Eur J Med Chem 43:675-682
15. Jeong BS, Choi HY, Thapa P, Karki R, Lee E, Nam JM, Na Y, Ha E-M, Kwon Y, Lee ES (2011) Synthesis, Topoisomerase I and II Inhibitory activity, cytotoxicity, and structure-activity relationship study of rigid analogues
of 2,4,6-trisubstituted pyridine containing 5,6-dihydrobenzo[h]quinoline moiety. Bull Korean Chem Soc 32:303-306
16. Eryazici I, Moorefield CN, Newkome GR (2008) Square-planar Pd(II), Pt(II), and $\mathrm{Au}(I I I)$ terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem Rev 108:1834-1895
17. Patel KK, Plummer EA, Darwish M, Rodger A, Hannon MJ (2008) Aryl substituted ruthenium bis-terpyridine complexes: intercalation and groove binding with DNA. J Inorg Biochem 91:220-229
18. Gomha SM, Salah TA, Abdelhamid AO (2015) Synthesis, characterization and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as potent anticancer agents. Monatsh Chem 146:149-158
19. Gomha SM, Abdel-aziz HM (2015) Synthesis and antitumor activity of 1,3,4-thiadiazole derivatives bearing coumarine ring. Heterocycles 91:583-592
20. Dawood KM, Gomha SM (2015) Synthesis and anti-cancer activity of 1,3,4-thiadiazole and 1,3-thiazole derivatives having 1,3,4-oxadiazole moiety. J Heterocycl Chem 52:1400-1405
21. Abbas IM, Gomha SM, Elneairy MAA, Elaasser MM, Mabrouk BKA (2015) Antimicrobial and anticancer evaluation of novel synthetic tetracyclic system through Dimroth rearrangement. J Serb Chem Soc 80:1251-1264
22. Gomha SM, Abbas IM, Elneairy MAA, Elaasser MM, Mabrouk BKA (2015) Synthesis and biological evaluation of novel fused triazolo[4,3-a] pyrimidinones. Turk J Chem 39:510-531
23. Gomha SM, Zaki YH, Abdelhamid AO (2015) Utility of 3-acetyl-6-bromo2 H -chromen-2-one for synthesis of new heterocycles as potential anticancer agents. Molecules 20:21826-21839
24. Gomha SM, Riyadh SM, Mahmmoud EA, Elaasser MM (2015) Chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst for synthesis of arylazothiazoles and 1,3,4-thiadiazoles under microwave irradiation. Chem Heterocycl Comp 51:1030-1038
25. Gomha SM, Salah TA, Hassaneen HME, Abdel-aziz H, Khedr MA (2016) Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules 21:1-17
26. Gomha SM, Badrey MG, Edrees MM (2016) Heterocyclization of a bis-thiosemicarbazone of 2,5-diacetyl-3,4-disubstituted-thieno[2,3-b]thiophene bis-thiosemicarbazones leading to bis-thiazoles and bis-1,3,4-thiadiazoles as anti-breast cancer agents. J Chem Res 40:120-125
27. Gomha SM, Abdallah MA, Mourad MA, Elaasser MM (2016) Application of Mannich and Michael reactions in synthesis of pyridopyrimido[2,1-b] [1,3,5]thiadiazinones and pyridopyrimido[2,1-b][1,3]thiazinones and their biological activity. Heterocycles 92:688-699
28. Zelenin KN, Oleinik SV, Alekseev WV, Potekhin AA (2001) Structure of cyanoacetylhydrazones of aldehydes and ketones. Russ J General Chem 71:1116-1120
29. Gomha SM, Khalil KD (2012) A Convenient ultrasound-promoted synthesis and cytotoxic activity of some new thiazole derivatives bearing a coumarin nucleus. Molecules 17:9335-9347
30. Refat HM, Fadda AA (2013) Synthesis and antimicrobial activity of some novel hydrazide, benzochromenone, dihydropyridine, pyrrole, thiazole and thiophene derivatives. Eur J Med Chem 70:419-426
31. Gomha SM, Abdel-Aziz HM (2013) An efficient synthesis of functionalized 2-(heteroaryl)-3H-benzo[f]chromen-3-ones and antibacterial evaluation. Chem Res 5:298-303
32. Ahmed SA, Ahmed OM, Abdelhamid AO (2014) Synthesis and anti-tumor activities of new [1,2,4]triazolo[1,5-a]pyrimidine derivatives. Eur J Chem 5:334-338
33. Gomha SM, Riyadh SM, Mahmmoud EA, Elaasser MM (2015) Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic catalyst. Heterocycles 91:1227-1243

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions
BMC

[^0]: *Correspondence: s.m.gomha@gmail.com; ygaber@kku.edu.sa
 ${ }^{2}$ Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
 ${ }^{5}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
 Full list of author information is available at the end of the article

