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Abstract 

Eleven new tetrahydrobenzo[b]pyran derivatives were synthesized via a three component reaction of different aro-
matic aldehydes, methyl cyanoacetate and 1,3-cyclohexadione, with water as solvent under catalyst-free microwave 
irradiation. The structures of all the new molecules were well analysed and their structures established by using vari-
ous spectral techniques (1H NMR, 13C NMR, 15N NMR and HRMS). Various advantages of reported protocol are the ease 
of preparation, short reaction times (10 min), aqueous solvent and excellent yields (89–98%). Additionally, this method 
provides a clean access to the desired products by simple workup.
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Introduction
Multi component reaction (MCR) is an important tech-
nique for the effective and swift synthesis of a wide range 
of composite heterocyclic frameworks [1–3]. MCR is 
a distinctly focused approach for organic synthesis, 
because of their ability to make composite molecular 
functionality from the three or more starting materials 
through one-pot reaction [3–5] and for the creation of 
new C–C and C–O bonds [6]. Improvement in new mul-
ticomponent reactions with an environmentally benign 
perception has received ample attention due to the pros-
pect of compliance with green chemistry principles [6, 7].

Reactions facilitated by microwave irradiation (MWI) 
have attracted significant attention, owing to the envi-
ronmental benign operational simplicity and higher 
selectivity [8, 9]. MWI enhances the reaction rate by 
providing more energy to the reacting molecules and in 
many cases the reaction rate is 10- to 1000-fold faster 
than conventional heating [10, 11]. With advent of MWI, 
catalyst-free and solvent-free reactions have increased as 
they provide an opportunity to work with open vessels 

[12]. Furthermore, it circumvents the problems associ-
ated with higher-pressure conditions and offers a pos-
sibility for scaling-up the reaction under a moisture free 
environment [13]. Moreover, MWI offers other benefits 
including reduced reaction time, fast reaction optimiza-
tion, mild reaction conditions, higher yields, reproduc-
ibility, lower solvent consumption and ease of synthesis 
of difficult compounds [14].

Heterocyclic frameworks have always presented an 
opportunity for the preparation of numerous privileged 
scaffolds with diverse biological activity [15–17]. Ease 
of MCR assembly and many sites for diversification 
helped mapping bioactive chemical space [7, 15–19]. 
Furthermore, new innovative and workable procedures 
for the synthesis of different heterocyclic molecules are 
always attractive. Benzopyran and its derivatives have 
appealed to the researchers from medicinal, organic, 
industrial and other chemical fields, due to their use-
ful pharmacological or medicinal applications, such as 
anticancer [20], anti-HIV [21], antifungal [22], antivi-
ral [23], anti-inflammatory [24], antimalarial [25] anti-
oxidant [26] and antimicrobial [27] activities. They are 
also broadly used in perfumes, cosmetics, agrochemi-
cals and in food as additives [28, 29]. Literature reveals 
reports for synthesis of benzopyrans using with vari-
ous catalysts like hexamethylenetetraminebromine [30], 
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magnetite-dihydrogen phosphate [31],  Bmim[BF4] [32], 
PPA-SiO2 [33], Ca(OTf)2:Bu4NPF6 [34], phenylboronic 
acid [35] and  H6P2W12O62·H2O [36], MWI/PEG [37] etc. 
Previously reported procedures come with various limi-
tations, like use of expensive reagents/catalysts, toxic sol-
vents, strict reaction conditions, low product yields, long 
reaction times and nonrecyclability of catalysts, which 
confine their scope in practical applications (details in 
Additional file 1: Table S1).

In our continuous quest for evolving facile and efficient 
approaches for the synthesis of diverse heterocycles via 
MCR methodologies [38–40], we have earlier reported 
the protocols for the synthesis of several heterocyclic bio-
logical active molecules [41–44]. The current work focus 
on the microwave irradiation approach for the first time, 
for the synthesis of a new series of benzopyran deriva-
tives, through one-pot reaction of aromatic aldehyde, 
methyl cyanoacetate and 1,3-cyclohexadione using water 
as solvent.

Experimental procedure
General procedure for synthesis of tetrahydrobenzo[b]
pyrans (4a–k)
A mixture of aromatic aldehyde (1  mmol), methyl 
cyanoacetate (1.1  mmol) and 1,3-cyclohexadione 
(1  mmol) were dissolved in water (5.0  mL) in a micro-
wave vessel. Then, the mixture was microwave irradiated 
at 150 W for 10 min (Fig. 1). Thin layer chromatography 
(TLC) analysis was used to monitor the reaction pro-
gress. After completion of the reaction, the reaction mix-
ture was cooled, filtered and washed with cold ice water. 
Further, the crude product was recrystallized by using 
ethanol to obtain pure product. Structures of all products 
were confirmed based on the spectral analysis with 1H 
NMR, 15N NMR (GHSQC), 13C NMR, 19F NMR, FTIR, 
and HRMS (instrumentation details in Additional file 1).

Spectral data of representative compounds

Methyl 2‑amino‑4‑(4‑methoxyphenyl)‑5‑oxo‑5,6,7,8‑tet‑
rahydro‑4H‑chromene‑3‑carboxylate (4a) Mp.: 193–
195  °C; 1H NMR (400  MHz, DMSO-d6) δ = 1.80–1.82 
(m, 1H,  CH2), 1.91–1.96 (m, 1H,  CH2), 2.21–2.30 (m, 2H, 
 CH2), 2.60–2.63 (m, 2H,  CH2), 3.67 (s, 3H,  OCH3), 3.87 
(s, 3H,  OCH3), 4.48 (s. 1H, CH), 6.75 (d, J = 8.64 Hz, 2H, 
ArH), 7.09 (d, J = 8.64 Hz, 2H, ArH), 7.50 (s, 2H,  NH2); 
13C NMR (100  MHz, DMSO-d6):19.85, 26.23, 30.62, 
32.02, 36.29, 50.44, 53.09, 54.85, 55.73, 77.82, 79.11, 
98.23, 113.22, 141.95, 123.91, 128.33, 133.51, 138.58, 
154.55, 157.33, 159.23, 162.87, 163.57, 168.34, 196.02; 
15N NMR (40.55 MHz, DMSO-d6) δ = 7.50 (s, 2H,  NH2); 
FT-IR: 3397, 3302, 2944, 2843, 1725, 1689, 1583, 1509, 
1429; HRMS of  [C18H19NO5 + Na]+ (m/z): 352.1161; 
Calcd.: 352.1161.

Methyl 2‑amino‑4‑(3‑methoxyphenyl)‑5‑oxo‑5,6,7,8‑tet‑
rahydro‑4H‑chromene‑3‑carboxylate (4b) M.p.: 209–
210  °C; 1H NMR (400  MHz, DMSO-d6) δ = 1.85–1.90 
(m, 1H,  CH2), 1.99–2.03 (m, 1H,  CH2), 2.30–2.36 (m, 2H, 
 CH2), 2.64–2.68 (m, 2H,  CH2), 3.58 (s, 3H,  OCH3), 3.75 
(s, 3H,  OCH3), 4.59 (s. 1H, CH), 6.73–6.78 (m, 3H, ArH), 
7.18 (t, J = 8.68  Hz, 1H, ArH), 7.60 (s, 2H,  NH2); 13C 
NMR (100  MHz, DMSO-d6):19.82, 26.24, 32.77, 36.25, 
50.49, 54.76, 77.40, 110.60, 113.73, 116.78, 119.51, 128.93, 
147.95, 158.80, 159.37, 164.15, 168.26, 196.03; 15N NMR 
(40.55  MHz, DMSO-d6) δ = 7.60 (s, 2H,  NH2); FT-IR: 
3404, 3280, 2946, 2836, 1682, 1665, 1594, 1510; HRMS of 
 [C18H19NO5 + H]+ (m/z): 330.1763; Calcd.: 330.1766.

Methyl 2‑amino‑4‑(4‑fluorophenyl)‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4c) M.p.: 188–189 °C; 
1H NMR (400  MHz, DMSO-d6) δ = 1.79–1.85 (m, 1H, 
 CH2), 1.92–1.98 (m, 1H,  CH2), 2.23–2.30 (m, 2H,  CH2), 
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Fig. 1 Three-component synthetic route for tetrahydrobenzo[b]pyran derivatives
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2.59–2.61 (m, 2H,  CH2), 3.50 (s, 3H,  OCH3), 4.53 (s. 1H, 
CH), 7.01 (d, J = 15.72 Hz, 2H, ArH), 7.15 (d, J = 3.08 Hz, 
2H, ArH), 7.56 (s, 2H,  NH2); 13C NMR (100  MHz, 
DMSO-d6): 19.80, 26.25, 30.65, 32.40, 36.23, 50.48, 53.33, 
77.38, 101.91, 115.55, 116.73, 128.04, 128.08, 133.65, 
133.75, 153.88, 159.23, 162.28, 163.40, 164.06, 168.17, 
196.01; 15N NMR (40.55 MHz, DMSO-d6) δ = 7.56 (s, 2H, 
 NH2); 19F NMR (376.58 MHz, DMSO): − 104.15; FT-IR: 
3420, 3309, 2949, 1691, 1648, 1520, 1487; HRMS of 
 [C17H16NO4F + Na]+ (m/z): 340.0992; Calcd.: 340.1008.

Methyl 2‑amino‑4‑(2,5‑dimethoxyphenyl)‑5‑oxo‑5,6,7,8‑ 
tetrahydro‑4H‑chromene‑3‑carboxylate (4d) M.p.: 222–
223  °C; 1H NMR (400  MHz, DMSO-d6) δ = 1.90–2.03 
(m, 3H,  CH3), 2.29–2.33 (m, 2H,  CH2), 2.51–2.56 (m, 2H, 
 CH2), 3.58 (s, 3H,  OCH3), 3.75 (s, 3H,  OCH3), 3.77 (s, 3H, 
 OCH3), 4.76 (s, 1H, CH), 6.17 (s, 2H,  NH2), 6.64–6.67 (m, 
1H, ArH), 6.72 (s, 1H, ArH), 6.90 (d, J = 3.08 Hz, 1H, ArH; 
13C NMR (100  MHz, DMSO-d6): 20.36, 26.97, 31.44, 
36.90, 50.78, 55.67, 56.59, 79.03, 111.99, 112.74, 116.05, 
117.44, 122.63, 134.12, 149.73, 152.57, 153.14, 158.87, 
163.48, 169.80, 196.56; 15N NMR (40.55  MHz, DMSO-
d6) δ = 6.17 (s, 2H,  NH2); FT-IR: 3391, 3270, 2952, 2839, 
1727, 1685, 1590, 1428; HRMS of  [C19H21NO6 + Na]+ 
(m/z): 382.1266; Calcd.: 382.1267.

Methyl 2‑amino‑4‑(2‑bromophenyl)‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4e) M.p.: 231–232  °C; 
1H NMR (400  MHz, DMSO-d6) δ = 1.86–1.89 (m, 1H, 
 CH2), 1.97–2.04 (m, 1H,  CH2), 2.20–2.25 (m, 1H,  CH2), 
2.30–2.33 (m, 1H,  CH2), 2.66 (t, J = 6.08 Hz, 2H,  CH2), 3.51 
(s, 3H,,  OCH3), 4.89 (s. 1H, CH), 7.06 (t, J = 7.88 Hz, 1H, 
ArH), 7.21 (d, J = 7.8  Hz, 1H, ArH), 7.29 (t, J = 6.64  Hz, 
1H, ArH), 7.47 (d, J = 6.8 Hz, 1H, ArH), 7.68 (s, 2H,  NH2); 
13C NMR (100  MHz, DMSO-d6): 19.81, 26.37, 30.65, 
33.99, 36.39, 50.19, 76.74, 115.65, 123.18, 130.01, 132.47, 
144.95, 153.41, 158.99, 163.94, 168.44, 195.65; 15N NMR 
(40.55  MHz, DMSO-d6) δ = 7.68 (s, 2H,  NH2); FT-IR: 
3409, 3292, 2949, 1724, 1689, 1645, 1514; HRMS of 
 [C17H16BrNO4 + Na]+ (m/z): 400.0157; Calcd.: 400.0160.

Methyl 2‑amino‑4‑(3‑(trifluoromethyl)phenyl)‑5‑oxo‑5,6,7,8‑ 
tetrahydro‑4H‑chromene‑3‑carboxylate (4f) M.p.: 
214–216  °C; 1H NMR (400  MHz, DMSO-d6) δ = 1.94–
2.08 (m, 2H,  CH2), 2.30–2.32 (m, 2H,  CH2), 2.57–2.62 
(m, 2H,  CH2), 3.56 (s, 3H,  OCH3), 5.32 (s. 1H, CH), 
6.21 (s, 2H,  NH2), 7.22 (t, J = 7.56 Hz, 2H, ArH), 7.38 (t, 
J = 7.4 Hz, 1H, ArH), 7.51 (d, J = 7.92 Hz, 1H, ArH); 13C 
NMR (100  MHz, DMSO-d6): 20.19, 27.00, 36.82, 50.70, 
53.70, 80.66, 117.82, 126.30, 126.93, 126.97, 129.94, 
130.62, 131.15, 144.70, 158.15, 162.90, 169.47, 196.26; 
15N NMR (40.55 MHz, DMSO-d6) δ = 6.21 (s, 2H,  NH2); 
19F NMR (376.58  MHz, DMSO): − 53.68; FT-IR: 3500, 

3415, 3308, 2948, 1689, 1650, 1526, 1307; HRMS of 
 [C18H16F3NO4 + Na]+ (m/z): 390.0928; Calcd.: 390.0929.

Methyl 2‑amino‑4‑(2‑methoxyphenyl)‑5‑oxo‑5,6,7,8‑tetrahydro‑ 
4H‑chromene‑3‑carboxylate (4g) mp 235–237  °C; 1H 
NMR (400 MHz, DMSO-d6) δ = 1.76–1.95 (m, 2H,  CH2), 
2.14–2.25 (m, 2H,  CH2), 2.55–2.59 (m, 2H,  CH2), 3.45 
(s, 3H,  OCH3), 3.70 (s, 3H,  OCH3), 4.60 (s. 1H, CH), 
6.76–6.80 (m, 1H, ArH), 6.85 (t, J = 7.44  Hz, 1H, ArH), 
7.05–7.07 (m, 1H, ArH), 7.12 (t, J = 5.76  Hz, 1H, ArH), 
7.46 (s, 2H,  NH2); 13C NMR (100 MHz, DMSO-d6): 20.49, 
26.85, 31.40, 36.91, 39.99, 50.72, 56.09, 76.63, 112.38, 
115.28, 120.11, 127.59, 131.50, 133.55, 158.21, 160.12, 
164.63, 169.13, 196.32; 15N NMR (40.55  MHz, DMSO-
d6) δ = 7.46 (s, 2H,  NH2); FT-IR: 3389, 3251, 3192, 2946, 
1683, 1637, 1529, 1460; HRMS of  [C18H19NO5 + H]+ 
(m/z): 330.0929; Calcd.: 330.0937.

Methyl 2‑amino‑4‑(2‑nitrophenyl)‑5‑oxo‑5,6,7,8‑tetrahydro‑ 
4H‑chromene‑3‑carboxylate (4h) M.p.: 218–220  °C; 1H 
NMR (400  MHz, DMSO-d6) δ = 1.80–1.86 (m, 1H,  CH2), 
1.92–1.98 (m, 1H,  CH2), 2.13–2.20 (m, 1H,  CH2), 2.25–2.30 
(m, 1H,  CH2), 2.61 (t, J = 5.88  Hz, 2H,  CH2), 3.38 (s, 3H, 
 OCH3), 5.32 (s. 1H, CH), 7.29–7.34 (m, 2H, ArH), 7.53–
7.57 (m, 1H, ArH), 7.71 (s, 2H,  NH2), 7.73 (d, J = 6.92 Hz, 
1H, ArH); 13C NMR (100  MHz, DMSO-d6): 19.73, 26.41, 
28.57, 36.29, 50.41, 76.37, 115.40, 123.81, 126.97, 130.23, 
132.80, 140.65, 148.74, 159.16, 164.48, 168.13, 195.80; 15N 
NMR (40.55 MHz, DMSO-d6) δ = 7.71 (s, 2H,  NH2); FT-IR: 
3518, 3401, 3292, 2947, 1688, 1649, 1519, 1351; HRMS of 
 [C17H16N2O6 + Na]+ (m/z): 367.0908; Calcd.: 367.0906.

Methyl 2‑amino‑4‑(2‑chlorophenyl)‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4i) M.p.: 210–213  °C; 
1H NMR (400  MHz, DMSO-d6) δ = 1.87–1.95 (m, 2H, 
 CH2), 2.23–2.26 (m, 2H,  CH2), 2.46–2.51 (m, 2H,  CH2), 
3.49 (s, 3H,  OCH3), 4.94 (s. 1H, CH), 6.13 (s, 2H,  NH2), 
6.97 (t, J = 7.72  Hz, 1H, ArH), 7.06 (t, J = 7.36  Hz, 1H, 
ArH) 7.16 (d, J = 6.56 Hz, 1H, ArH), 7.21 (d, J = 7.68 Hz, 
1H, ArH);13C NMR (100  MHz, DMSO-d6): 20.24, 26.97, 
32.99, 36.87, 50.78, 79.19, 116.17, 126.20, 127.34, 129.84, 
132.11, 133.67, 142.01, 158.36, 163.45, 169.52, 196.39; 
15N NMR (40.55 MHz, DMSO-d6) δ = 6.13 (s, 2H,  NH2); 
FT-IR: 3453, 3392, 2954, 1721, 1687, 1603, 1492; HRMS of 
 [C17H16ClNO4 + Na]+ (m/z): 356.1169; Calcd.: 356.1168.

Methyl 2‑amino‑4‑(2‑fluorophenyl)‑5‑oxo‑5,6,7,8‑tetrahy‑
dro‑4H‑chromene‑3‑carboxylate (4j) M.p.: 217–219  °C; 
1H NMR (400  MHz, DMSO-d6) δ = 1.96–2.05 (m, 2H, 
 CH2), 2.31–2.35 (m, 2H,  CH2), 2.56–2.60 (m, 2H,  CH2), 
3.60 (s, 3H,  OCH3), 4.84 (s, 1H, CH), 6.21 (s, 2H,  NH2), 
6.88–6.93 (m, 1H, ArH), 7.01 (t, J = 6.28  Hz, 1H, ArH) 
7.08–7.11 (m, 1H, ArH), 7.29–7.33 (m, 1H, ArH); 13C 
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NMR (100  MHz, DMSO-d6): 20.28, 26.91, 29.77, 30.93, 
36.80, 50.88, 53.54, 78.91, 115.30, 123.40, 123.43, 124.94, 
124.98, 127.76, 129.11, 131.40, 131.45, 135.29, 135.39, 
146.53, 146.61, 158.55, 160.03, 162.50, 163.63, 169.47, 
196.45; 15N NMR (40.55 MHz, DMSO-d6) δ = 6.21 (s, 2H, 
 NH2); 19F NMR (376.58  MHz, DMSO): − 53.51; FT-IR: 
3420, 3309, 2949, 1691, 1648, 1520, 1487; HRMS of 
 [C17H16FNO4 + Na]+ (m/z): 340.0956; Calcd.: 340.0961.

Methyl 2‑amino‑4‑(pyridine‑3‑yl)‑5‑oxo‑5,6,7,8‑tetrahydro‑ 
4H‑chromene‑3‑carboxylate (4k) M.p.: 222–223  °C; 1H 
NMR (400  MHz, DMSO-d6) δ = 1.81–1.86 (m, 1H,  CH2), 
1.93–1.97 (m, 1H,  CH2), 2.23–2.31 (m, 2H,  CH2), 2.60–2.64 
(m, 2H,  CH2), 3.50 (s, 3H,  OCH3), 4.52 (s, 1H, CH), 7.21–
7.25 (m, 1H, ArH), 7.46–7.49 (m, 1H, ArH) 7.08–7.11 (m, 
1H, ArH), 7.62 (s, 2H,  NH2), 8.28 (d, J = 4.72 Hz, 1H, ArH), 
8.38 (d, J = 1.96 Hz, 1H, ArH);13C NMR (100 MHz, DMSO-
d6): 19.79, 26.26, 31.18, 36.16, 50.54, 76.62, 115.71, 123.28, 
134.83, 141.71, 146.97, 149.06, 159.20, 164.53, 167.99, 
196.04; 15N NMR (40.55 MHz, DMSO-d6) δ = 7.62 (s, 2H, 
 NH2); FT-IR: 3372, 2996, 1671, 1530, 1362, 1293; HRMS of 
 [C16H16N2O4 + Na]+ (m/z): 323. 1009; Calcd.: 323.1008.

Results and discussion
Reaction optimization
Based on preliminary studies, 2-methoxy benzalde-
hyde (1  mmol), methyl cyanoacetate (1.1  mmol) and 
1,3-cyclohexadione (1 mmol) were identified as ideal for 
the multicomponent reaction. The effect of solvent on 
the reaction were assessed under MWI and conventional 
heating conditions. The results using different non-polar, 
aprotic and protic solvents under conventional heating 
and MWI conditions are summarised in Table 1. No reac-
tion occurred in absence of solvent, under conventional, 

MWI, RT or reflux conditions. Non-polar solvents like 
n-hexane and toluene failed to produce any product, 
even after long reaction time at RT (Table 1, entries 3 and 
4). However, the presence of polar aprotic solvents, DMF, 
THF and acetonitrile revealed a trace of anticipated 
product (Table 1, entries 5–7), under both conventional 
and MWI conditions. With polar protic solvents, MeOH, 
EtOH and water offered, good to excellent yields with 
both conventional heating and MWI, but MWI proved 
better in terms of yield and reaction times (Table  1, 
entries 8–10). The reason for the low yield, when using 
conventional heating could also be likely due to the steric 
demand for 2-substituted aromatics.

The polar protic solvents, when microwave irradi-
ated generate more dipole moments and their dipole 
moments effectively align with the external electric field. 
Based on the impressive yields and short reaction times, 
the MWI procedure with environmentally benign water 
proved to be ideal. Hence, MWI with water was used for 
the further studies.

Under the optimized reaction conditions, the MWI 
approach was applied for preparation of series of ben-
zopyran derivatives, employing different aromatic alde-
hydes and methyl cyanoacetate and 1,3-cyclohexadione. 
Table 2 summarizes the results. All the aldehydes reacted 
smoothly to afford the desired target molecules without 
any side products. The electronic nature of substituents 
on the aromatic aldehyde ring did not show any effect 
on the yield or reaction rate. Both electron withdraw-
ing and donating substituents on the aldehyde ring gave 
the excellent yield for the respective product. 1H NMR, 
13C NMR, 15N NMR, 19F NMR, HRMS and IR spectral 
data were used to evaluate the structures of all the newly 
synthesised molecules (4a–k). Spectra of all the com-
pounds are incorporated in Additional file 1. The HMBC 

Table 1 Yields of benzopyran (4a) under diverse conventional heating and MWI conditions

All products were characterized by 1HNMR, 13C NMR, 15N NMR and HR-MS spectral data
a Isolated yields; –: no reaction

Entry Solvent Condition Conventional MWI

Time (h) Yielda (%) Time (h) Yielda (%)

1 – R.T 12.0 – 6.0 –
2 – Heat 10.0 – 6.0 –
3 n-Hexane R.T 10.0 – 4.0 –
4 Toluene R.T 10.0 – 4.0 –
5 THF R.T 5.0 5 2.5 13

6 CH3CN R.T 5.5 6 3.0 10

7 DMF R.T 6.0 9 2.5 15

8 MeOH R.T 3.5 67 2.5 71

9 EtOH R.T 2.5 71 0.5 84

10 H2O R.T 3.0 79 0.20 98
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interactions of trial reaction 4g are shown in Additional 
file 1: Figure S1. In the 1H NMR spectra, the individual 
singlets peaks at δ = 3.45, 3.70, 4.60 and 7.46 indicate 
the presence of –OCH3, –CH and –NH2 protons. The 
selected HMBC interactions of 4 g are definite proof for 
the product formation. The –CH proton in the benzo 
pyran ring was assigned to the peak at δ = 4.60 and it fur-
ther interacts with carbon atoms (C-3, C-9, C-1a, C-2a, 
C-10, C-2, C-11, C-5) at δ = 76.63, 115.28, 133.55, 158.21, 
160.12, 164.63, 169.13 and 196  ppm respectively. The 

singlet at δ = 7.46 was identified to the –NH2 proton in 
the benzo pyran ring (Additional file 1: Figure S2).

Although, no reaction intermediates could be identi-
fied, based on the reaction products and the literature 
reports, the probable mechanism for the synthesis of 
benzopyran derivatives under MWI is described (Fig. 2). 
Initially, an aromatic aldehyde (1) react with methyl 
cyanoacetate (2) via Knoevenagel condensation to afford 
an intermediate, cyanophenylacrylate (3) [45, 46]. The 
intermediate reacts with the active methylene moiety in 
(4) via Michael addition, through the electrophilic C=C 
bond to afford transient intermediate (5) [47]. Finally, the 
intermediate (6) undergoes intramolecular cyclisation 
followed by tautomerisation, to afford its respective ben-
zopyran derivative.

Conclusion
The MWI facilitated three-component synthesis of 
eleven novel tetrahydrobenzo[b]pyrans through one-
pot reaction with water as solvent proved an expedient 
technique. It is applicable for the archive preparation 
of benzopyran systems in excellent yields, with no need 
for catalysts or organic solvents. This method offers 
extensive applications in the field of diversity-oriented 
synthesis, drug discovery, combinatorial chemistry and 
scaled-up preparations.

Table 2 Preparation of tetrahydrobenzo[b]pyran derivatives 
in water as solvent using MWI

New compounds/no literature for bps available

Entry R Product Yield (%)

1a 4-OMe 4a 96

1b 3-OMe 4b 92

1c 4-F 4c 94

1d 2,5-(OMe)2 4d 90

1e 2-Br 4e 93

1f 2-CF3 4f 89

1g 2-OMe 4 g 98

1h 2-NO2 4 h 94

1i 2-Cl 4i 89

1j 2-F 4j 92

1k 3-Pyridinyl 4k 95
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Fig. 2 Proposed reaction mechanism for tetrahydrobenzo[b]pyrans derivatives
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