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Abstract 

Background: Dihydrofolate reductase (DHFR) is an important target for antimetabolite class of antimicrobials 
because it participates in purine synthesis. 2-mercaptobenzimidazole (2MBI) has similar structural features as purine 
nucleotides. Given that benzimidazole and similar heteroaromatics have been broadly examined for their anticancer 
potential, so, we hereby report the design, synthesis and biological studies (i.e. antimicrobial and anticancer studies) 
of 2MBI derivatives.

Methodology: The antimicrobial activity of synthesized 2MBI derivatives were evaluated against Gram positive and 
Gram negative bacterial species as well as fungal species by tube dilution technique whereas their anticancer activity 
was assessed against human colorectal carcinoma cell line (HCT116) by Sulforhodamine B (SRB) assay. They were also 
structurally characterized by IR, NMR, MS and elemental analyses.

Results, discussion and conclusion: The antimicrobial activity findings revealed that compound N1 
 (MICbs,st,ca = 1.27, 2.54, 1.27 µM), N8  (MICec= 1.43 µM), N22  (MICkp,an= 2.60 µM), N23 and N25  (MICsa= 2.65 µM) exhib-
ited significant antimicrobial effects against tested strains, i.e. Gram-positive, Gram-negative (bacterial) and fungal 
strains. The anticancer screening results demonstrated that compounds N9, N18  (IC50 = 5.85, 4.53 µM) were the most 
potent compounds against cancer cell line (HCT116) even more than 5-FU, the standard drug  (IC50 = 9.99 µM). 
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Background
The global statistics of infectious diseases have reached 
a worrying level following the rise of multi-drug resist-
ant Gram-positive and Gram-negative microorganisms. 
Advanced treatments against infections which rely on 
a long multidrug schedule are often impeded by patient 
noncompliance and the emergence of multidrug resist-
ant pathogens. The issue of resistance could be poten-
tially overcome by exploring new effective agents. In this 
regard, rational drug design has been proven to be much 

beneficial as the biochemical basis of mechanisms of 
intrinsic and acquired resistance is largely known [1].

In terms of cancer, presently used chemotherapeutic 
agents restrain the growth of tumour through suppres-
sion of DNA replication and transcription. Chemother-
apy is, however, often compromised by development 
of multidrug resistance, endurance of cancer cells in 
anaerobic environment, involvement of ribonucleotide 
reductase (RNR), topoisomerase I (Topo I) and topoi-
somerase II (Topo II) in neoplasm growth. Nevertheless, 
the attempt of discovering new curative anticancer agents 
in last decade has led to targets of specific molecular 
modifications in tumour cells. The new approach now 
focuses mainly on the development of small biologically 
active molecules containing significant activity without 
toxicity related to the usual chemotherapy [2].
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Substituted benzimidazole compounds, with excel-
lent antimicrobial activity against bacteria and abil-
ity to permeate mammalian cell membranes as well as 
maintain the activity with low to no associated toxicity 
have made these lead compounds attractive for further 
research work in the field of medicine [3]. The search for 
new active, antitumour drugs with lower toxicity against 
normal cells and tissues, however, remains as one of the 
most significant problems of modern antitumour chemo-
therapy [4].

In modern drug discovery and medicinal chemistry, 
benzimidazole nucleus has been proven to be a very sig-
nificant pharmacophore with a wide variety of activities 
[5] including antihistaminic  (H1-receptor antagonists, 
e.g. clemizole and emedastine) [6], antifungal (systemic 
fungicide, e.g. benomyl) [7], antiulcer (proton pump 
inhibitors (PPIs), e.g. tenatoprazole, dexlansoprazole and 
timoprazole) [8], antihypertensive (angiotensin II recep-
tor blockers, e.g. candesartan and azilsartan) [9], anti-
viral (oral ribosyl benzimidazole, e.g. maribavir) [10], 
antiparasitic (specifically anthelmintics, e.g. cyclobenda-
zole, luxabendazole and cambendazole) [11], antidiabetic 
(PPAR gamma agonist, e.g. rivoglitazone) [12], analgesic 
(opioid analgesic, e.g. clonitrazene) [13] and anticancer 
(antimitotic agent, e.g. nocodazole, PARP inhibitor, e.g. 
veliparib) [14] (Fig. 1).

Figure  2 shows some antimicrobial and antican-
cer activities of benzimidazole derivatives which were 
reviewed based on a literature survey [15–19]. As part 
of our continuing effort in search for new therapeutic 
agents, we had synthesized a number of pharmacologi-
cally important heterocyclic compounds (N1–N26). In 
order to study the impact of electron-donating and 
accepting groups within the moieties, an attempt has 
been made to combine 2MBI and p-amino benzoic acid 
moieties as hybrid and substitute them with different 
substituted amines. In this regard, a library of substituted 
benzimidazole was designed, synthesized, spectroscopi-
cally characterized and evaluated for potential antimicro-
bial and anticancer effects in vitro.

Results and discussion
Chemistry
A series of 2MBI benzamides has been synthesized as 
discussed in Scheme  1. The 4-(2-chloro acetamido) 
benzoic acid (a) was prepared by the reaction of chlo-
roacetyl chloride with p-amino benzoic acid, which 
on further reaction with 2-mercaptobenzimidazole 
yielded 4-(2-(1H-benzo[d]imidazol-2-ylthio)aceta-
mido) benzoic acid (b). The reaction of b with thionyl 
chloride resulted in the formation of 4-(2-(1H-benzo[d]
imidazol-2-ylthio)acetamido)benzoyl chloride (c). The 
reaction of above synthesized benzoyl chloride (c) 

with different substituted anilines in methanolic/etha-
nolic solvent yielded the title scaffolds (N1–N26). The 
physicochemical properties, elemental analyses and 
mass spectral studies of title compounds (N1–N26) 
are presented in Table  1. The molecular structures of 
synthesized compounds were determined by FT-IR, 
1H/13C-NMR (Table  2). The halogenated compounds, 
N5 and N22 (Ar–Br) showed peak around 633–
616 cm−1, N19 and N20 (Ar-F) at 1117–1116 cm−1 and 
N6, N7, N8, N12, N13, N23 and N25 (Ar–Cl) around 
771–738  cm−1. The existence of Ar–NO2 group (N1, 
N2, N3, N4, N6 and N12) was indicated by the appear-
ance of stretching at 1549–1513 cm−1. The spectral data 
of aryl alkyl ether group (C–O–C, Ar–OCH3) in com-
pounds N16, N17 and N18 was in between 2837 and 
2831 cm−1. The band at 2948–2860 cm−1 in the spectral 
data of N9, N10, N11 and N15 depicted the presence 
of Ar–CH3. The IR stretching around 714–689  cm−1 
(C–S), 1692–1635 cm−1 (–CONH–), 3110–3018 cm−1, 
~ 1600 cm−1 (C–H and C=C, Ar) and 1361–1253 cm−1 
(C=N) found in all synthesized 2MBI derivatives. In 
1H-NMR spectra, the existence of multiplet signals 
between 6.51 and 9.10 δ ppm indicated the presence of 
aromatic proton of synthesized derivatives (N1–N26). 
Due to presence of Ar-CH3, compounds N9, N10, 
N11 and N15 showed singlet at 2.23–2.53 δ ppm and 
because of Ar–OCH3, N16, N17 and N18 showed 
singlet at range of 3.73–3.74  δ  ppm. The synthesized 
molecules exhibited singlet at 7.93–8.01  δ  ppm, 2.55–
4.38  δ  ppm and 4.36–4.53  δ  ppm due to the existence 
of –CONH, –CH2 groups and –NH of imidazole ring. 
The findings of elemental analyses of synthesized 2MBI 
derivatives were recorded within theoretical results of 
± 0.4%. Conclusively, the 13C-NMR spectra of synthe-
sized benzamides were in DMSO-d6 and their molec-
ular structures were in accordance with the spectral 
signals. Mass spectra of the synthesized derivatives 
reflected the characteristic molecular ion peaks.

Antimicrobial screening results
The results of synthesized 2MBI benzamides (N1–
N26) are presented in Table  3, Figs.  3, 4 and 5. The 
synthesized compounds were screened for their anti-
microbial potential using cefadroxil (antibacterial) and 
fluconazole (antifungal) as standard drugs. Among 
the synthesized compounds, 2, 4-dinitro substituted 
benzamide, i.e. compound N1  (MICbs,st,ca = 1.27, 2.54, 
1.27  µM) exhibited significantly potent antimicro-
bial effect against B. subtilis, S. typhi and C. albicans, 
respectively. The meta substituted (–Cl and –Br) 
derivatives, i.e. compounds N8  (MICec = 1.43 µM) and 
N22  (MICkp,an = 2.60 µM) displayed promising activity 
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Fig. 1 Marketed formulations having benzimidazole moiety
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against E. coli, K. pneumoniae and A. niger, respec-
tively. Furthermore, the 2, 3 and 2,5-dichloro sub-
stituted ones, i.e. compounds N23 and N25  (MICsa 
= 2.65µM)  were found to be more potent against S. 

aureus. From the antimicrobial screening results, it 
was found that all the scaffolds had excellent activity 
compared with the reference drugs.   

Fig. 2 Design of benzimidazole analogues for antimicrobial and anticancer activity based on literature study
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Comp. R R2 R3 R4 R5 R6 Comp. R R2 R3 R4 R5 R6

N1 - NO2 H NO2 H H N14 - H H H H H
N2 - NO2 H H H H N15 - H H CH3 H H
N3 - H NO2 H H H N16 - OCH3 H H H H
N4 - H H NO2 H H N17 - H OCH3 H H H
N5 - H H Br H H N18 - H H OCH3 H H
N6 - NO2 H Cl H H N19 - F H H H H
N7 - Cl H H H H N20 - H H F H H
N8 - H Cl H H H N21 - - - - -

N9 - CH3 H H H CH3 N22 - H Br H H H
N10 - CH3 H CH3 H H N23 - Cl Cl H H H
N11 - H CH3 H H H N24 - - - - -

N12 - Cl H NO2 H H N25 - Cl H H Cl H
N13 - H H Cl H H N26 - - - - -

Reaction conditions:    
Step i: Chloroacetyl chloride, Triethylamine, Ethanol, Stirred at room temperature for 1 h;
Step ii: 2-Mercaptobenzimidazole, anhyd. Potassium carbonate, Ethanol, Reflux 5-6 h (40 oC);
Step iii:  Thionyl chloride, Methanol, Reflux 2-3 h (40 oC); 
Step iv:  Substituted anilines, Methanol, Reflux 4-5 h (35-40 oC).

Scheme 1 Synthesis of 4-(2-(1H-benzo[d]imidazol-2-ylthio)acetamido)-N-(substitutedphenyl) benzamide derivatives
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Anticancer screening results
The anticancer activity of synthesized analogues (N1–
N26) was evaluated against human colorectal cancer 
cell line (HCT116) by SRB assay. Table  3 shows the 
antiproliferative outcome of the synthesized analogues 
and 5-FU, the standard drug against HCT116. The anti-
cancer screening results indicated that 2,6-xylidine and 
para-methoxy substituted scaffolds, i.e. compounds N9 
 (IC50 = 5.85  µM) and N18  (IC50 = 4.53  µM) to exhibit 
the greatest anticancer activity among the synthesized 
scaffolds. The anticancer effect was even more potent 
than 5-FU  (IC50 = 9.99 µM).

Toxicity study
For the selectivity index calculation of the most active 
compounds (N9 and N18), these compounds were 
tested against normal human embryonic kidney cell 
line (HEK-293). Compounds were dissolved into 0.1% 
DMSO solution. The compounds were diluted in con-
centration (2 μM, 4 μM, 6 μM, 8 μM and 10 μM). The 
cells were incubated with these compounds for 24  h 
and more than almost 100% of HEK-293 cells were 
viable at  IC50 for growth inhibition of each studied 
compound. Results showed the significant viability 
difference between the test compounds treated and 
control cells (at zero concentration) after 24  h with 
(P < 0.01). The 50% of the cells were viable at the lethal 
dose  (LD50) 8.43  μM and 8.22  μM of the active com-
pounds, N9 and N18, respectively. As we know that 
higher the  LD50 value than the  IC50 higher will be the 
selectivity that implied that the compounds may have 
better safety of the each of two compounds since the 
 IC50 is much lower the  LD50 (Table 4).

MTT assay
Human embryonic kidney (HEK-293) cells were main-
tained in Dulbecco’s modified Eagle’s medium (10% 
heat-inactivated FBS). Antibiotics penicillin and strep-
tomycin were added and were placed at 37  °C in a 5% 
 CO2 incubator for colorimetric based assay using MTT 
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide) compounds N9 and N18 were seeded with 
five thousand HEK-293 cells (viability 98%) into 96-well 
plate for 24  h. Wells were added with MTT 5  mg/
mL after 24  h incubation for 4  h [20]. Absorbance at 
580  nm was recorded using Synergy/HTX MultiScan 
reader (BioTek) and lethal dose  LD50 was calculated and 
for selectivity index (SI) was calculated.

Structure–activity relationship studies
Electronic discussion
The substitution pattern of the 2MBI benzamide deriva-
tives was carefully selected to confer different electronic 

environment to the molecules. Thus, electron donating 
groups to aromatic ring, such as methyl and methoxy and 
electron withdrawing groups from aromatic ring, such 
as halogens, nitro were chosen as substituents on the 
molecular structure of the target compounds [20]. Most 
of 2MBI benzamides derivatives were found to possess 
moderate antimicrobial activity except those compounds 
which has electron withdrawing groups. Suggestions are 
made that the negative inductive effect plays a signifi-
cant role in medicinal field. This means that compounds 
with high electron density gave poor antimicrobial activ-
ity which makes the diffusion of compounds more dif-
ficult throw the body of the bacteria cell while presence 
of electron withdrawing groups will cause a decrease of 
electronic density in 2MBI benzamides compared with 
electron donating groups, thereby facilitating entry of the 
2MBI benzamides into the cell. This is likely to increase 
the antimicrobial potency. The increase in antimicrobial 
activity is due to faster diffusion of the 2MBI benzamides 
with electron withdrawing groups because the reduc-
ing the total electron density on 2MBI benzamide com-
pounds make the diffusion faster through the bacteria 
cell [21].

Because of their significant medicinal importance, 
the synthesis of substituted benzimidazoles has become 
a focus of synthetic organic chemistry. The antiprolif-
erative effect and mechanism of induction of apoptosis 
by various bioactive heterocyclic compounds and the 
impact of electron releasing and withdrawing groups on 
the induction of apoptosis is supported by the studies of 
Gowda et al. [22]. Structure–activity relationship studies 
of the synthesized compounds based on electronic dis-
cussion, antimicrobial and anticancer screening results, 
the following SAR (Fig. 6) can be assumed:

 i. Substitution of aromatic ring with 2,6-dime-
thyl substituent (compound N9,  IC50 = 5.85  µM) 
considerably improved the anticancer activ-
ity of benzamide derivatives whereas substitu-
tion with 2,4-dimethyl group (compound N10, 
 IC50 = 23.23  µM) had no such effect. The para-
OCH3 substituted aromatic ring (compound N18, 
 IC50 = 4.53  µM) significantly improved the anti-
cancer activity of benzamide derivatives while the 
ortho and meta-OCH3 substituents (compound 
N16–N17,  IC50 = 23.12 µM) does not improved the 
anticancer activity of synthesized compounds.

 ii. The substitution of aromatic amine with di-NO2 
group (compound N1) had significant effect on B. 
subtilis, S. typhi and fungal strain C. albicans, com-
pared to compounds with single –NO2 substitution 
(N2, N3 and N4). The meta-Cl and -Br substituted 
aromatic amines (compounds N8, N22) resulted in 
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Table 1 The physicochemical properties of synthesized 2-mercaptobenzimidazole derivatives

Comp. IUPAC name Molecular structures Mol. formula; C, 
H, N analyses 
calculated 
(found); MS ES 
+ (ToF): m/z—
[M+ +1]

m. 
p. 
(oC)

Rf
valuea

%
yield

N1 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2,4-
dinitrophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

O2N

NO2

C22H16N6O6S: C,
53.66; H, 3.27; 
N, 17.07; (C, 
53.70; H, 3.31; 
N, 17.11); 493

180–
183

0.65 68.36

N2 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
nitrophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

O2N
C22H17N5O4S: C,
59.05; H, 3.83; 
N, 15.65;(C, 
59.09; H, 3.87; 
N, 15.69); 448

235–
238

0.40 53.80

N3 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(3-
nitrophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

NO2
C22H17N5O4S: C, 
59.05; H, 3.83; 
N, 15.65; (C, 
59.09; H, 3.86; 
N, 15.69); 448

215–
218

0.60 55.15

N4 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
nitrophenyl)benzamide

N
H

N
S

C
O

HN CO
HN NO2

C22H17N5O4S: C, 
59.05; H, 3.83; 
N, 15.65; (C, 
59.08; H, 3.87; 

200–
203

0.55 53.36

N, 15.69); 448
N5 4-(2-(1H-

Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
bromophenyl)benzamide

N
H

N
S

C
O

HN CO
HN Br

C22H17N4O2SBr:
C, 54.89; H, 
3.56; N, 11.64; 
(C, 54.93; H, 
3.60; N, 11.68); 
482

220–
223

0.67 67.50

N6 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
chlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

O2N

Cl

C22H16N5O4SCl:
C, 54.83; H, 
3.35; N, 14.53; 
(C, 54.87; H, 
3.39; N, 14.57); 
482

212–
215

0.64 95.80

N7 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
chlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Cl
C22H17N4O2SCl:
C, 60.48; H, 
3.92; N, 12.82; 
(C, 60.52; H, 
3.96; N, 12.86); 
437

225–
228

0.57 63.50

N8 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(3-
chlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Cl
C22H17N4O2SCl:
C, 60.48; H, 
3.92; N, 12.82; 
(C, 60.53; H, 
3.96; N, 12.85); 
437

220–
223

0.62 73.40
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Table 1 (continued)

N9 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2,6-
dimethylphenyl)benzamide

N
H

N
S

C
O

HN CO
HN

H3C

H3C

C24H22N4O2S: C, 
66.96; H, 5.15; 
N, 13.01; (C, 
66.99; H, 5.19; 
N, 13.05); 431

207–
210

0.56 64.03

N10 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2,4-
dimethylphenyl)benzamide

N
H

N
S

C
O

HN CO
HN

H3C

CH3

C24H22N4O2S: C, 
66.96; H, 5.15; 
N, 13.01; (C, 
66.99; H, 5.18; 
N, 13.05); 431

205–
208

0.73 58.67

N11 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(3-
methylphenyl)benzamide

N
H

N
S

C
O

HN CO
HN

CH3
C23H20N4O2S: C, 
626.33; H, 4.84; 
N, 13.45; (C, 
66.37; H, 4.88; 
N, 13.49); 417

212–
215

0.60 67.87

N12 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
chloro-4-
nitrophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Cl

NO2

C22H16N5O4SCl:
C, 54.83; H, 
3.35; N, 14.53; 
(C, 54.87; H, 
3.39; N, 14.57); 
482

205–
208

0.50 91.00

N13 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
chlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN Cl

C22H17N4O2SCl:
C, 60.48; H, 
3.92; N, 12.82; 
(C, 60.52; H, 

200–
203

0.69 61.92

3.96; N, 12.86); 
437

N14 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-
phenylbenzamide

N
H

N
S

C
O

HN CO
HN

C22H18N4O2S: C, 
66.55; H, 4.51; 
N, 13.92; (C, 
66.59; H, 4.55; 
N, 13.96); 403

190–
193

0.38 58.67

N15 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
methylphenyl)benzamide

N
H

N
S

C
O

HN CO
HN CH3

C23H20N4O2S: C, 
66.33; H, 4.84; 
N, 13.45; (C, 
66.37; H, 4.88; 
N, 13.49); 417

210–
213

0.68 76.83

N16 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
methoxyphenyl)benzamide

N
H

N
S

C
O

HN CO
HN

H3CO C23H20N4O3S: C, 
66.87; H, 4.66; 
N, 12.95; (C, 
66.91; H, 4.70; 
N, 12.99); 433

190–
193

0.55 66.15

N17 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(3-
methoxyphenyl)benzamide

N
H

N
S

C
O

HN CO
HN

OCH3
C23H20N4O3S: C, 
66.87; H, 4.66; 
N, 12.95; (C, 
66.90; H, 4.69; 
N, 12.99); 433

187–
190

0.58 70.46
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Table 1 (continued)

N19 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
fluorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

F
C22H17N4O2SF:
C, 62.84; H, 
4.08; N, 13.33; 
(C, 62.88; H, 
4.12; N, 13.37); 
421

200–
203

0.55 97.21

N20 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-
fluorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN F

C22H17N4O2SF:
C, 62.84; H, 
4.08; N, 13.33; 
(C, 62.88; H, 
4.11; N, 13.36); 
421

207–
210

0.73 84.50

N21 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-ethyl-
N-phenylbenzamide

N
H

N
S

C
O

HN CO
N

CH3

C24H22N4O2S: C, 
66.96; H, 5.15; 
N, 13.01; (C, 
66.99; H, 5.19; 
N, 13.05); 431

207–
210

0.62 73.41

N22 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2-
bromophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Br
C22H17N4O2SBr:
C, 54.89; H, 
3.56; N, 11.64; 
(C, 54.93; H, 
3.60; N, 11.68); 
482

200–
203

0.73 63.26

N23 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2,3-
dichlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Cl Cl
C22H16N4O2SCl2:
C, 56.06; H, 
3.42; N, 11.89; 
(C, 56.10; H, 
3.46; N, 11.93); 
472

203–
205

0.64 58.53

N24 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-
methyl-N-
phenylbenzamide

N
H

N
S

C
O

HN CO
N

C23H20N4O2S: C, 
66.33; H, 4.84; 
N, 13.45; (C, 
66.37; H, 4.88; 
N, 13.49); 417

205–
208

0.55 62.93

N25 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(2,5-
dichlorophenyl)benzamide

N
H

N
S

C
O

HN CO
HN

Cl

Cl

C22H16N4O2SCl2:
C, 56.06; H, 
3.42; N, 11.89; 
(C, 56.10; H, 
3.46; N, 11.93); 
472

200–
203

0.65 59.66

N26 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N,N-
diphenylbenzamide

N
H

N
S

C
O

HN CO
N

C28H22N4O2S: C, 
70.27; H, 4.63; 
N, 11.71; (C, 
70.31; H, 4.67; 
N, 11.75); 479

208–
211

0.52 81.50

N18 4-(2-(1H-
Benzo[d]imidazol-2-
ylthio)acetamido)-N-(4-

N
H

N
S

C
O

HN CO
HN OCH3

C23H20N4O3S: C, 
63.81; H, 4.66; 
N, 12.95; (C, 

197–
200

0.73 74.00

methoxyphenyl)benzamide 63.85; H, 4.70; 
N, 12.99); 433

a TLC mobile phase-Ethyl acetate
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improved antimicrobial activity against E. coli, K. 
pneumoniae and fungus A. niger, respectively. The 
2,3 and 2,5-dichloro substituted aromatic amines 
(compounds N23, N25) noticeably improved the 
antibacterial activity against S. aureus.

Thus, it very well may be stated that nitro, chloro and 
bromo substituents bearing derivatives are the most suit-
able scaffolds for accomplishing the best antimicrobial 
range. The role of electron withdrawing group in improv-
ing antimicrobial activities is supported by the studies of 
Kumar et al. [19].

Experimental section
The reactants and reagents for the synthesis were got 
from Hi-media Laboratory, Loba Chemie and CDH Pvt. 
Ltd. Microbial type cell cultures (MTCC) for biological 
study were procured from Institute of Microbial Tech-
nology and Gene bank, Chandigarh. Reaction steps for-
ward was monitored by thin layer chromatography (TLC) 
using ethyl acetate as mobile phase. The synthetic scheme 
was drawn via Chem Draw 8.03. Determination of melt-
ing point was done using labtech melting point equip-
ment. IR spectrum was recorded on Bruker 12060280, 
spectrometer via KBr in the range of 4000–400  cm−1. 

Table 3 Antimicrobial and anticancer screening results of synthesized compounds

Bacillus subtilis MTCC 441-bs, Staphylococcus aureus MTCC 3160-sa, Escherichia coli MTCC 443-ec, Salmonella typhi MTCC 3231-st, Klebsiella pneumoniae MTCC 9024-kp, 
Candida albicans MTCC 227-ca and Aspergillus niger MTCC 281-an

DMSO dimethyl sulfoxide, NG no growth

Std. drugs: a Cefadroxil; b Fluconazole; c 5-FU (5-Fluorouracil)

Compounds MIC (minimum inhibitory concentration = µM) IC50 (μM)

Bacterial strains Fungal strains Cancer 
cell line 
(HCT116)Gram +ve Gram −ve

MICbs MICsa MICec MICst MICkp MICca MICan

N1 1.27 5.08 5.08 2.54 5.08 1.27 5.08 > 20.31

N2 1.40 5.59 5.59 2.79 5.59 2.79 2.79 > 22.35

N3 1.40 5.59 2.79 2.79 5.59 2.79 2.79 > 22.35

N4 1.40 5.59 2.79 2.79 2.79 2.79 2.79 > 22.35

N5 2.60 5.19 2.60 2.60 5.19 2.60 5.19 > 20.77

N6 1.30 5.19 2.59 2.59 5.19 2.59 2.59 > 20.75

N7 1.43 5.72 5.72 2.86 2.86 2.86 2.86 > 22.89

N8 1.43 5.72 1.43 2.86 2.86 2.86 2.86 13.73

N9 2.90 5.81 5.81 2.90 5.81 2.90 2.90 5.85

N10 1.45 5.81 5.81 2.90 5.81 2.90 2.90 > 23.23

N11 1.50 6.00 6.00 3.00 3.00 3.00 3.00 > 24.01

N12 1.30 5.19 5.19 2.59 5.19 2.59 5.19 > 20.75

N13 1.43 5.72 5.72 2.86 5.72 2.86 5.72 > 22.89

N14 3.11 6.21 6.21 6.21 3.11 3.11 6.21 12.42

N15 1.50 6.00 6.00 3.00 3.00 3.00 6.00 19.21

N16 2.89 5.78 5.78 2.89 5.78 2.89 2.89 > 23.12

N17 1.45 5.78 5.78 2.89 2.89 2.89 2.89 > 23.12

N18 1.45 5.78 2.89 2.89 2.89 2.89 5.78 4.53

N19 1.49 5.95 5.95 5.95 2.97 2.97 5.95 > 23.78

N20 2.97 5.95 5.95 5.95 5.95 2.97 2.97 14.27

N21 2.90 5.81 2.90 5.81 2.90 2.90 2.90 > 23.23

N22 1.30 5.19 2.60 2.60 2.60 2.60 2.60 > 13.86

N23 2.65 2.65 2.65 2.65 2.65 2.65 2.65 > 21.22

N24 1.50 6.00 3.00 3.00 3.00 3.00 3.00 20.41

N25 2.65 2.65 2.65 2.65 5.30 2.65 2.65 > 21.22

N26 1.31 5.22 2.61 2.61 5.22 2.61 2.61 > 20.90

Broth control NG NG NG NG NG NG NG –

Std. 1.72a 3.44a 3.44a 3.44a 3.44a 4.08b 4.08b 9.99c
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1H/13C-NMR spectra recorded at 600 and 150  MHz, 
respectively on Bruker Avance III 600 NMR spectrom-
eter. For Mass spectra, Waters Micromass Q-ToF Micro 

instrument was used. Elemental analyses of 2MBI deriva-
tives were performed on Perkin-Elmer 2400 C, H and N 
analyzer.

Fig. 3 Antibacterial screening results against Gram positive species

Fig. 4 Antibacterial screening results against Gram negative species

Fig. 5 Antifungal screening results against fungal species
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Procedure to synthetic Scheme 1

Step i: Synthesis of 4‑(2‑chloroacetamido) benzoic acid 
(a) p-Aminobenzoic acid (0.01  mol) and triethylamine 
(0.01 mol) were stirred properly in ethanol to get a clear 
solution and cooled it for half an hour. Now the solu-
tion was added with chloroacetylchloride (0.01 mol) and 
stirred for 1  h and the precipitated compound a, was 
strained via filtering, desiccated and recrystallized with 
ethanol [1].

Step ii: Synthesis of 4‑(2‑(1H‑benzo[d]imidazol‑2‑ylthio)
acetamido)benzoic acid (b) Amixture of 4-(2-chloro-
acetamido) benzoic acid (a, 0.01 mol), 2-mercapto benzi-
midazole (0.01 mol) and potassium carbonate (0.01 mol) 
in ethanol (50 ml) was refluxed for 5–6 h and then cooled 
at room temperature followed by evaporation to dryness. 
The resultant residue was washed with water and recrys-
tallized from ethanol [23].

Step iii: Synthesis of 4‑(2‑(1H‑benzo[d]imidazol‑2‑ylthio)
acetamido)benzoyl chloride (c) Thionyl chloride 
(0.3  mol) was added to 4-(2-(1H-benzo[d]imidazol-
2-ylthio) acetamido) benzoic acid (b, 0.25  mol) and the 
mixture were refluxed for 2–3 h  . The excess of thionyl 
chloride was removed by distillation [17].

Step iv: Synthesis of final (N1‑N26) 2MBI deriva‑
tives The reaction mixture of 4-(2-(1H-benzo[d]imi-
dazol-2-ylthio)acetamido)benzoyl chloride (c, 0.01  mol) 
and substituted aniline (0.01 mol) in suitable solvent was 
refluxed for appropriate time and thin layer chromatog-
raphy was used to monitor the reaction. After comple-
tion of reaction, it was poured into ice cold water and the 
resultant precipitate was filtered, desiccated and recrys-
tallized using ethanol [24].

Biological study
Antimicrobial evaluation (in vitro)
The antimicrobial potential of new synthesized com-
pounds (N1–N26) was validated against Gram-positive, 
Gram-negative bacteria using cefadroxil and fungal 
strains with fluconazole, by serial dilution method. Dilu-
tions were set up in nutrient broth I.P. for bacterial (incu-
bated at 37 ± 1 °C for 24 h) and Sabouraud dextrose broth 
I.P. for fungal species (25 ± 1  °C for 7  days for A. niger) 
and (37 ± 1 °C for 48 h for C. albicans) [25, 26].

Anticancer evaluation (in vitro)
The antiproliferative activity (expressed as  IC50) was 
assessed against HCT116 using SRB B assay. This assay 
was based on the ability of SRB dye to bind electrostati-
cally and its pH-dependence on protein basic amino acid 
residues of trichloroacetic acid-fixed cells [27]. Briefly, 
HCT116 was seeded at 2500 cell/well (96 well plates) 
and allowed to attach overnight before being exposed 
to 2MBI compounds (stock solution was suspended in 
DMSO) for 72 h and subjected to SRB assay. DMSO less 
than 1% did not kill the cells and the concentration of 
DMSO in each compound was 0.1%. Treated cells were 

Table 4 Lethal dose and  selectivity index calculation 
of most active compounds (N9 and N18)

Compound Lethal dose 
 (LD50)

IC50 Selectivity index 
 (LD50/IC50)

N9 8.43 5.85 1.44

N18 8.22 4.53 1.81

Fig. 6 Structural requirements for the antimicrobial and anticancer activities of synthesized benzimidazole analogues
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fixed with 10% cold trichloroacetic acid and stained in 
0.4% SRB. Unincorporated dye was rinsed off with 1% 
acetic acid and plates were left to air-dry at room tem-
perature overnight. The air-dried plates were placed on 
a plate shaker and bound SRB was solubilised in 10 mM 
Tris base solution. Absorbance was measured by a com-
puter-interfaced 96-well plate spectrophotometer at 
570 nm.

MTT assay
Human embryonic kidney (HEK-293) cells were main-
tained in Dulbecco’s modified Eagle’s medium (10% 
heat-inactivated FBS). Antibiotics penicillin and strep-
tomycin were added and were placed at 37  °C in a 5% 
 CO2 incubator for colorimetric based assay using MTT 
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 
bromide) compounds N9 and N18 were seeded with five 
thousand HEK-293 cells (viability 98%) into 96-well plate 
for 24  h. Wells were added with MTT 5  mg/mL after 
24 h incubation for 4 h [28]. Absorbance at 580 nm was 
recorded using Synergy/HTX MultiScan reader (BioTek) 
and lethal dose  LD50 was calculated and for selectivity 
index (SI) was calculated.

Conclusion
The present work involves the synthesis of new substi-
tuted benzamides linked to p-amino benzoic acid and 
2-mercaptobenzimidazole which possess antibacterial, 
antifungal and antiproliferative activities. The synthe-
sized compounds were evaluated in vitro against seven 
representative microorganisms along with the anti-
cancer activity against carcinoma cell line (HCT116). 
Antimicrobial results demonstrated that the presence 
of nitro and halo groups in aromatic ring enhanced the 
antimicrobial potential. Anticancer results revealed that 
4-(2-(1H-benzo[d]imidazol-2-ylthio)acetamido)-N-
(2,6-dimethyl phenyl)benzamide (N9,  IC50 = 5.85  µM) 
and 4-(2-(1H-benzo[d]imidazol-2-ylthio)acetamido)-
N-(4methoxyphenyl) benzamide (N18,  IC50 = 4.53 µM) 
were the most potent anticancer agents even higher 
than the standard drug 5-FU  (IC50 = 9.99  µM). These 
compounds were more selective towards cancer cells 
rather than macrophages. Further the toxicity study 
revealed the better selectivity index against the HEK-
293 cell lines at the respective  IC50 concentration. Study 
suggested that compound may be safer as anticancer 
after required experimental evaluation. The molecular 
structures of active compounds are mentioned in Fig. 7.

Compound 1
MICST = 2.54 µM; 

MICBS,CA = 1.27 µM 

Compound 8
MICEC = 1.43 µM

Compound 9
IC50 = 5.85 µM

Compound 23
MICSA = 2.65 µM

Compound 22
MICKP,AN = 2.60 µM

Compound 18
IC50 = 4.53 µM

Compound 25
MICSA = 2.65 µM

Fig. 7 Molecular structures of the most active compounds
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