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Abstract 

Background: Described a series of main target compounds pyrimido[5,4‑e][1,2,4]triazines is obtained via conden‑
sation of 6‑hydrazinyluracil with different aromatic aldehydes to give the hydrazones followed by nitrosation with 
 HNO2 then intramolecular cyclization. On the other hand, pyrazolopyrimidines can be obtained by the reaction of 
hydrazones with dimethylformamide‑dimethylacetal (DMF‑DMA), DMF‑DMA in the presence of DMF or by refluxing 
the hydrazinyluracil with DMF‑DMA in the presence of DMF directly. The newly synthesized compounds are evaluated 
in vitro for their anticancer activity against human lung carcinoma (A549).

Results: A newly substituted compounds of benzaldehyde‑pyrimidin‑4‑yl)hydrazones (5a–f), pyrimido[5,4‑e][1,2,4]triazines 
6a–e, arylethylidenehydrazinylpyrimidine 7a,b and pyrazolopyrimidines 9,11 are screened for cytotoxic activity against 
human lung carcinoma (A549) cell line. They exhibited a good yield. Compound 6b shows the highest effect with  IC50 value 
3.6 μM, followed by compounds 9, 5a, 8, 5e, 6e, 5b, 5f, 7a, 5c, 6c, 7b, 6a, 11, 5d and 6d.

Conclusion: A simple and efficient route is used for the synthesis of pyrimido[5,4‑e][1,2,4]triazines and pyrazolopyri‑
midines. The synthesized compounds are screened for antitumor activity. 
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Background
Triazine is analogues of six membered benzene ring 
via replacing the three carbon atoms with nitrogens. 
1,2,4-triazine and their fused ring structures with one 
or more heterocycles represent an important class of 
nitrogen heterocycles compounds. It possess the motif 
part of naturally and synthetic pharmaceutical products 

[1–9]. They exhibit a broad spectrum biological effects 
[10] with antibacterial [11, 12], antitumor [13, 14], anti-
convulsant [15], anti-inflammatory [16], and antiviral 
properties [17]. 6-Azacytosine and 6-azauracil are used 
as effective antiviral and antitumor activities [18–21]. 
The tirapazamine (TPZ) is efficacious in the treatment of 
different human cancer cells via inducing DNA damage 
in poorly oxygenated tumor cells [22]. 
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The pyrimidotriazine antibiotics represent a wide spec-
trum of both antimicrobial and antitumor activities [23]. 
Pyrimido[5,4-e][1,2,4]triazine constitutes the essential 
active ingredient of the antibiotics like fervenulin (which 
is formed from actinomyces), xanthothricin, and reumy-
cin [2, 3]. Reumycin [24] is isolated from actinomyces 
rectus bruneus and used as an antitumor antibiotic for 
treating brain tumors. Other hetero annelated 1,2,4-tri-
azines have clinical antiviral effect against influenza A 
and B viruses [4], anti-HIV and anticancer activity [5, 
6]. They also show antimicrobial, antifungal effects and 
cytotoxicity to MCF-7 cells [7, 8]. Fervenulin (planomy-
cin), and its tautomeric isomer toxoflavin (panthothricin) 
{1.6-dimethylpyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-
dione} reveal a wide spectrum antibacterial, antifungal, 
herbicidal and anticancer activities [25–27]. 

Result and discussion
Chemistry
In continuation to our research, the importance of fer-
venulin and its diverse pharmacological activity on 
the medical field, especially as antitumors, we became 
interested in the prospect of developing our strate-
gies to synthesize new fervenulin analogues of pyrimi-
dotriazine and pyrazolopyrimidine derivatives using 
6-hydrazinyl-1-propyluracil (4) as a core for construc-
tion. This substrate is prepared via simple hydrolysis of 
2,4,6-trichloropyrimidine [37] followed by N-1 selective 
alkylation using propyl iodide in DMSO in the presence 
of potassium carbonate as a basic medium [38] then 
hydrazinolysis of 6-chloro-1-propyluracil (3) with hydra-
zine hydrate [38–40]. Condensation of substrate 4 with 
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Pyrazolopyrimidines constitute the core of many drugs 
with wide variety of applications in the field of medicine. 
They are bioactive isomeric purine analogues and have a 
significant activity as antimetabolites in purine biochemi-
cal reactions [28–31]. They have diverse pharmacological 
effect as tuberculostatic [32], antimicrobial activities [33], 
neuroleptic [34], CNS depressant [32], antihypertensive 
[35] and antileishmanial [36].

In this regard, our strategy is directed towards the syn-
thesis of new pyrimido[5,4-e][1,2,4]triazine and pyrazo-
lopyrimidine compounds because they have found wide 
applications in pharmaceutical fields. The structure of 
newly synthesized pyrimidotriazines and pyrazolopyri-
midines are proven on the basis of their 1H-NMR, mass 
spectral data, IR and elemental analysis.

different aromatic aldehydes in ethanol at room tempera-
ture for 1 h leads to the formation of hydrazones 5a–f in 
a good yield (Scheme 1).

The IR spectra of hydrazones displayed the N–H 
stretching bands at 3271–3122 cm−1. The stretching band 
of the two C=O groups (Amide I) is displayed within the 
range 1740–1625  cm−1. Compound 5d showed O–H 
stretching bands at 3560  cm−1 while the nitro group 
in compound 5e shows strong asymmetric and sym-
metric  NO2 stretching bands at 1514 and 1337  cm−1, 
respectively. The 1H-NMR spectra supported the previ-
ous observation from the IR spectra, where N3–H and 
C6–NH is highly deshielded. They appeared around δ 
10.75–10.05 ppm, while the α-CH of hydrazone appeared 
at the range δ 8.48–8.24  ppm. The C5-H was the most 
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shielded as expected around δ 5.46–5.30 ppm. The down-
field shift of the α-carbon of hydrazone appeared around 
δ 145 ppm in the 13C-NMR spectra.

Pyrimidotriazines 6a–e is isolated by the nitrosation 
of hydrazone compounds 5a–e at C-5 with in  situ pre-
pared nitrous acid. The inseparable 5-nitroso-derivatives 
undergoes cyclization via the nucleophilic attack of the 
electron rich α-carbon of the hydrazones on the nitroso 
group to form hydroxylamine intermediates, which are 
converted into the target pyrimidotriazines 6a–e by 

protonation of the N-hydroxyl group followed by the 
elimination of  H3O+ (Scheme 2). The IR spectra of 6a–e 
displayed broad absorption bands of NH stretching in 
the region of 3180–3135  cm−1. The two bands of C=O 
groups gave rise in the region of 1725–1670 cm−1.

Moreover, the cyclization of the hydrazone series are 
confirmed in 1H-NMR spectra through the disappear-
ance of both the α-CH hydrazone at δ 8.48–8.24 ppm and 
the C5-H of uracil at δ 5.46–5.30 ppm.
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Another condensation reaction is obtained via con-
densation of 4 with different acetophenones by stir-
ring at room temperature for 3–4 h (Scheme 3). The IR 
spectra of 7a,b displayed stretching bands at the range 
of 3188–3154  cm−1 due to N–H absorption and char-
acteristic bands at the range 1715–1691  cm−1 due to 
absorption of C=O groups. The mass spectra of these 
compounds show the expected molecular ions, whereas 
their 1H-NMR spectra exhibited two signals at δ 11.11–
11.06  ppm and at δ 9.13–8.96  ppm ascribed for N3–H 
and C6–NH protons respectively. The singlet signals of 
the methyl group protons at the α-carbon appeared at 
δ 2.42–2.37  ppm while for the CH-5 position appeared 
at δ 5.48–5.39  ppm. 13C-NMR confirmed the structure 
of 7a,b where the key signals at δ 78.8–79.8 ppm and δ 
14.3–14.2  ppm are assigned to sp2 carbon at position 5 
and sp3 carbon attached to the α-carbon respectively.

The target compound 9 is prepared by refluxing of 7a 
with DMF-DMA for 12 h or DMF-DMA in presence of 
DMF as a solvent for 1 h (Scheme 3). DMF-DMA is a con-
venient electrophile to introduce one-carbon units. The 
reaction proceeds via nucleophilic attack of C-5 to elec-
trophilic carbon center of acetal in DMF-DMA followed 
by intramolecular cyclization and elimination of dimeth-
ylamine. A subsequent methylation of NH-5 is observed 
which arises from O–CH3 group of the acetal not N–CH3 
as illustrated in Scheme  4. The plausible mechanism is 
proved by isolation of the intermediate 8. This interme-
diate is easily identified in IR, Mass, 1H-NMR and 13C-
NMR spectra. A broad stretching absorption band of NH 
appears at the region of 3136  cm−1 of the intermediate 
8 in IR spectra and disappears in the target compound 
9. Furthermore, 1H-NMR showed the disappearance of 
CH-5 proton at δ 5.48–5.39 ppm and the appearance of a 
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singlet signal at δ 8.08 ppm characteristic for CH–N pro-
ton, a singlet signal of α-C–CH3 at δ 2.39 ppm and two 
characteristic N–CH3 group at δ 3.19, 3.05 ppm of com-
pound 8 and disappears in compound 9 due to the elimi-
nation of dimethylamine (Scheme 4).

Whereas, the alkylation on N-5 in compound 9 is 
proven without doubt by the disappearance of a singlet 
signal of NH-5 proton at δ 10.13  ppm and the appear-
ance of the sp3 singlet signal at δ 3.23 ppm characteristic 
of  CH3 appears in 1H-NMR and a signal at δ 27.6  ppm 
in 13C-NMR. In addition, the 1H-NMR shows a singlet 
signal of CH-3 at δ 8.60  ppm and two doublet signals 
at δ 5.71–5.61  ppm corresponding to the two protons 
of methylene group which indicates that they are not 

magnetically equivalent. 13C-NMR shows the appearance 
of signals at δ 134.2 and 101.7 ppm characteristic for C-3 
and methylene carbon atom respectively.

Treatment of 4 with DMF-DMA in the presence 
of DMF by refluxing for 1  h yielded compound 11 
(Scheme  3). IR spectra shows characteristic absorption 
band at 1751, 1698  cm−1 for C=O groups. 1H-NMR 
spectrum displays three singlet signals at δ 8.41, 3.88 and 
3.19  ppm for CH-3, N(2)–CH3 and N(5)–CH3 respec-
tively. On the other hand, 13C-NMR showed C–N(2) at δ 
40.4 ppm and C–N(5) at δ 27.5 ppm which confirms the 
alkylation of N(5) with DMF-DMA. The plausible mech-
anism for this reaction is shown in (Scheme 5).
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Biological investigation
Cytotoxic activity
The in vitro growth inhibitory rates against human lung 
carcinoma (A549) cell line and effective antitumor doses 

(as measured by  IC50) of the synthesized compounds are 
investigated in comparison with the well-known antican-
cer standard drugs toxoflavin and 5-fluorouracil, using 
crystal violet colorimetric viability assay. Data generated 
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are used to plot dose response curves and presented in 
Table  1 and Fig.  1. The results reveal that all the tested 
compounds show high variation in the inhibitory growth 
rates and activities to the tumor cell line in a concentra-
tion dependent manner as shown in (Table 1). 

From the results in Fig. 1, it is clear that all the tested 
compounds are found to be very active at 500 μM against 
human lung carcinoma (A549) cell line after treatment 
for 72 h with inhibition ratio values between 60 and 97%. 
The difference between inhibitory activities of all com-
pounds with different concentrations is statistically sig-
nificant (p  < 0.001).

The highest activity against human lung carcinoma 
(A549) cell line is measured for compound 6b with  IC50 
value 3.6  μM, followed by compounds 9, 5a, 8, 5e, 6e, 
5b, 5f, 7a, 5c, 6c, 7b, 6a, 11, 5d and 6d with  IC50 values 
of 26.3, 26.8, 28.4, 49.3, 53.8, 54.7, 60.2, 60.5, 74.3, 81.5, 
104.6, 107.1, 123, 238.7, and 379.4  μM, compared with 
reference drugs 5-fluorouracil (10.5  μM) and toxoflavin 
(0.7 μM).

Methods
Instruments
All melting points were determined with an electrother-
mal melting-temperature II apparatus and are uncor-
rected. Element analyses are performed at the regional 
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Table 1 The  IC50 values represent the compound concen-
tration (μM) required to inhibit A549 tumor cell prolifera-
tion by 50%

a Reference drugs; 5-FU (5‑fluorouracil)

Compounds IC50 (µM) Compounds IC50 (µM)

5a 26.8 ± 1.3 6c 81.5 ± 4.3

5b 54.7 ± 2.1 6d 379.4 ± 24.8

5c 74.3 ± 5.1 6e 53.8 ± 3.5

5d 238.7 ± 12.5 7a 60.5 ± 2.6

5e 49.3 ± 4.1 7b 104.6 ± 4.8

5f 60.2 ± 3.2 8 28.4 ± 1.6

6a 107.1 ± 6.2 9 26.3 ± 0.9

6b 3.6 ± 0.2 11 123 ± 6.1

Toxoflavina 0.7 ± 0.1 a5‑FU 10.5 ± 0.1
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Fig. 1 Growth inhibition curves showing A549 cell line treated with the tested compounds at different concentrations compared with reference 
drugs 5‑flourouracil and toxoflavin
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center for mycology and biotechnology at Al-Azhar 
University. The infrared (IR) spectra are recorded using 
potassium bromide disc technique on Nikolet IR 200 
FT IR. Mass spectra are recorded on a DI-50 unit of 
Shimadzu GC/MS-QP 5050A at the regional center 
for mycology and biotechnology at Al-Azhar Univer-
sity. 1H-NMR and 13C-NMR spectra are determined on 
Bruker 400 MHz spectrometer using DMSO-d6 as a sol-
vent, applied nucleic acid research center, Zagazig Uni-
versity, Egypt. All reactions are monitored by TLC using 
precoated plastic sheets silica gel (Merck 60  F254). Spots 
are visualized by irradiation with UV light (254 nm). The 
used solvent system is chloroform: methanol (9:1) and 
ethyl acetate: toluene (1:1).

Synthesis
6-Chlorouracil (2) was prepared according to the 
reported method [37].

6-Chloro-1-propyluracil (3) was prepared according to 
the reported method [38].

6-Hydrazinyl-1-propyluracil (4) [38–40].

4‑Substituted benzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tet‑
rahydropyrimidin‑4‑yl)hydrazones (5a–f)
A mixture of 6-hydrazinyl-1-propyluracil (4) (2.17 mmol) 
and appropriate benzaldehydes (2.17  mmol) in etha-
nol (25 mL) is stirred at room temperature for 1 h. The 
formed precipitate is collected by filtration, washed with 
ethanol and crystallized from ethanol.

Benzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tetrahydropyrimi‑
din‑4‑yl)hydrazone (5a)
Yield: 83%; m.p. = 218–219  °C; IR (KBr) νmax  (cm−1): 
3224 (NH), 3045 (CH arom.), 2969, 2908 (CH aliph.), 
1739, 1647 (C=O), 1550 (C=N), 1516 (C=C); 1H-NMR 
(DMSO-d6): 10.69 (s, 1H, NH), 10.38 (s, 1H, NH), 8.39 (s, 
1H, CH), 7.73–7.71(d, 2H, J = 7.6  Hz,  Harom), 7.45–7.42 
(m, 3H, arom.), 5.38 (s, 1H, CH-5), 3.89–3.85 (t, 2H, 
 CH2), 1.60–1.55 (m, 2H,  CH2), 0.91–0.87 (t, 3H,  CH3); 
13C-NMR (DMSO-d6): δ = 162.4, 152.4, 151.0, 146.5, 
134.0, 130.0, 128.9, 126.9, 77.2, 42.2, 21.0, 10.7 ppm; MS: 
m/z (%) = M+, 272 (83), 243 (61), 216 (36), 153 (36), 145 
(31), 144 (25), 110 (27), 106 (58), 104 (100), 103 (22), 
90 (38), 89 (33), 77 (52); Anal. calcd. for  C14H16N4O2 
(272.30): C, 61.75; H, 5.92; N, 20.58. Found: C, 61.86; H, 
5.97; N, 20.73.

4‑Chlorobenzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tetrahy‑
dropyrimidin‑4‑yl)hydrazone (5b)
Yield: 85%; m.p. = 238–239 °C; IR (KBr) νmax  (cm−1): 3224 
(NH), 3056 (CH arom.), 2936 (CH aliph.), 1700, 1630 
(C=O), 1594 (C=N), 1558 (C=C), 870 (p-substituted 
phenyl); 1H-NMR (DMSO-d6): 10.68 (s, 1H, NH), 10.42 

(s, 1H, NH), 8.37 (s, 1H, CH), 7.75–7.73 (d, 2H, J = 8.4 Hz, 
 Harom), 7.51–7.49 (d, 2H, J = 8.4  Hz,  Harom), 5.39 (s, 1H, 
CH-5), 3.89–3.85 (t, 2H,  CH2), 1.60–1.54 (m, 2H,  CH2), 
0.90–0.87 (t, 3H,  CH3); 13C-NMR (DMSO-d6): δ = 162.4, 
152.4, 151.0, 145.1, 134.4, 133.0, 129.0, 128.5, 77.4, 42.2, 
21.0, 10.7 ppm; MS: m/z (%) = M + 2, 308 (31),  M+, 306 
(100), 279 (30), 277 (96), 252 (22), 250 (64), 179 (31), 178 
(27), 154 (12), 153 (52), 152 (39), 142 (23), 140 (82), 139 
(33), 138 (86), 136 (63), 127 (27), 125 (17), 124 (25), 113 
(22), 111 (48), 110 (37); Anal. calcd. for  C14H15ClN4O2 
(306.74): C, 54.82; H, 4.93; N, 18.26. Found: C, 55.04; H, 
5.01; N, 18.43.

4‑Bromobenzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tetrahy‑
dropyrimidin‑4‑yl)hydrazone (5c)
Yield: 84%; m.p. = 242–243 °C; IR (KBr) νmax  (cm−1): 3122 
(NH), 3028 (CH arom.), 2971 (CH aliph.), 1740, 1647 
(C=O), 1548 (C=N), 1515 (C=C), 869 (p-substituted 
phenyl); 1H-NMR (DMSO-d6): 10.68 (s, 1H, NH), 10.43 
(s, 1H, NH), 8.36 (s, 1H, CH), 7.70–7.63 (m, 4H, arom.), 
5.39 (s,1H, CH-5), 3.89–3.85 (t, 2H,  CH2),1.60–1.54 (m, 
2H,  CH2), 0.90–0.84 (t, 3H,  CH3); 13C-NMR (DMSO-
d6): δ = 162.5, 152.4, 151.0, 145.2, 133.3, 131.9, 128.7, 
123.2, 77.4, 42.2, 21.0, 10.7  ppm; MS: m/z (%) = M + 2, 
353 (6),  M+, 351 (12), 350 (77), 323 (23), 321 (68), 296 
(61), 294 (100), 186 (50), 183 (48), 182 (47), 181 (44), 168 
(30), 157 (36), 154 (20), 253 (27), 152 (56), 144 (41), 140 
(33), 110 (31), 102 (23), 89 (47), 76 (41); Anal. calcd. for 
 C14H15BrN4O2 (351.20): C, 47.88; H, 4.3; N, 15.95. Found: 
C, 48.02; H, 4.28; N, 16.02.

4‑Hydroxybenzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tetrahy‑
dropyrimidin‑4‑yl)hydrazone (5d)
Yield: 78%; m.p. = 213–214 °C; IR (KBr) νmax  (cm−1): 3560 
(OH), 3271 (NH), 3020 (CH arom.), 2968 (CH aliph.), 
1705, 1625 (C=O), 1581 (C=N), 1512 (C=C), 834 (p-sub-
stituted phenyl); 1H-NMR (DMSO-d6): 10.58 (s, 1H, NH), 
10.15 (s, 1H, NH), 9.90 (s, 1H, OH), 8.28 (s, 1H, CH), 
7.56–7.53 (d, 2H, J = 8.4  Hz,  Harom), 6.84–6.82 (d, 2H, 
J = 8.4 Hz,  Harom), 5.32 (s, 1H, CH-5), 3.87 - 3.85 (t, 2H, 
 CH2),1.59–1.57 (m, 2H,  CH2), 0.90–0.87 (t, 3H,  CH3); 13C-
NMR (DMSO-d6): δ = 162.5, 159.4, 152.5, 151.1, 147.0, 
128.7, 125.1, 115.8, 76.6, 42.1, 21.0, 10.7  ppm; MS: m/z 
(%) = M+, 288 (40), 259 (21), 232 (31), 161 (72), 160 (48), 
146 (24), 122 (61), 121 (26), 120 (88), 119 (100), 106 (30), 
1105 (20); Anal. calcd. for  C14H16N4O3 (288.30): C, 58.32; 
H, 5.59; N, 19.43. Found: C, 58.50; H, 5.67; N, 19.61.

4‑Nitrobenzaldehyde(2,6‑dioxo‑3‑propyl‑1,2,3,6‑tetrahydro‑
pyrimidin‑4‑yl)hydrazone (5e)
Yield: 91%; m.p. = 228–230 °C; IR (KBr) νmax  (cm−1): 3150 
(NH), 3022 (CH arom.), 2968 (CH aliph.), 1740, 1692 
(C=O), 1593 (C=N), 1561 (C=C), 1514  (NO2asymstr), 
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1337  (NO2symstr), 843 (p-substituted phenyl); 1H-NMR 
(DMSO-d6): 10.75 (s, 1H, NH), 10.68 (s, 1H, NH), 8.48 
(s, 1H, CH), 8.28–8.26 (d, 2H, J = 7.2  Hz,  Harom), 7.99–
7.97 (d, 2H, J = 7.2 Hz,  Harom), 5.46 (s, 1H, CH-5), 3.90–
3.87 (t, 2H,  CH2), 1.61–1.55 (m, 2H,  CH2), 0.91–0.87 
(t, 3H,  CH3); 13C-NMR (DMSO-d6): δ = 162.4, 152.3, 
151.0, 147.7, 143.7, 140.3, 127.8, 124.1, 78.1, 42.3, 21.1, 
10.7  ppm; MS: m/z (%) = M+, 317 (39), 288 (100), 261 
(83), 190 (38), 168 (22), 153 (91), 152 (54), 151 (34), 149 
(33), 127 (41), 110 (48), 103 (34), 89 (60), 84 (31), 76 (33), 
68 (50); Anal. calcd. for  C14H15N5O4 (317.30): C, 52.99; H, 
4.76; N, 22.07. Found: C, 53.15; H, 4.83; N, 22.24.

4‑(Dimethylamino)benzaldehyde(2,6‑dioxo‑3‑pro‑
pyl‑1,2,3,6‑tetrahydro‑pyrimidin‑4‑yl)hydrazone (5f)
Yield: 76%; m.p. = 234–235 °C; IR (KBr) νmax  (cm−1): 3220 
(NH), 3045 (CH arom.), 2958, 2869 (CH aliph.), 1729, 
1693 (C=O), 1593 (C=N), 1519 (C=C), 855 (p-substi-
tuted phenyl); 1H-NMR (DMSO-d6): 10.54 (s, 1H, NH), 
10.05 (s, 1H, NH), 8.24 (s, 1H, CH), 7.53–7.51 (d, 2H, 
J = 8.8  Hz,  Harom), 6.76–6.74 (d, 2H, J = 8.8  Hz,  Harom), 
5.30 (s, 1H, CH-5), 3.87–3.83 (t, 2H,  CH2), 2.97 (s, 6H, 
2  CH3), 1.59–1.54 (m, 2H,  CH2), 0.90–0.87 (t, 3H,  CH3); 
13C-NMR (DMSO-d6): δ = 162.4, 158.1, 154.0, 151.9, 
147.6, 128.2, 121.3, 111.8, 76.3, 42.0, 41.1, 21.0, 10.7 ppm; 
MS: m/z (%) = M+, 315 (100), 314 (10), 259 (8), 202 (11), 
188 (21), 173 (46), 148 (49), 147 (61), 146 (50), 145 (43), 
133 (39), 132 (30); Anal. calcd. for  C16H21N5O2 (315.37): 
C, 60.94; H, 6.71; N, 22.21. Found: C, 61.23; H, 6.83; N, 
22.37.

3‑Aryl‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑diones (6a–e)
A solution of 4-substituted benzaldehyde(2,6-dioxo-
3-propyl-1,2,3,6-tetrahydropyrimidin-4-yl)hydrazones 
(5a–e) (0.98 mmol) in glacial acetic acid (4 mL) is treated 
with sodium nitrite (1.16 mmol) by heating under reflux 
for 3–4  h. The reaction mixture is evaporated under 
reduced pressure. The residue is treated with ethanol 
(10  mL); the formed precipitate is filtered, washed with 
ethanol, and crystallized from DMF/ethanol (1:2) to 
afford compounds 6a–e.

3‑Phenyl‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑dione (6a)
Yield: 71%; m.p. = 290–291  °C; IR (KBr) νmax  (cm−1): 
3173 (NH), 3024 (CH arom.), 2968, 2840 (CH aliph.), 
1716, 1670 (C=O), 1565 (C=N), 1535 (C=C); 1H-
NMR (DMSO-d6): 12.25 (s, 1H, NH), 8.42–8.40 (d, 2H, 
J = 5.2  Hz,  Harom), 7.62–7.61 (m, 3H, arom.), 3.24–3.21 
(t, 2H,  CH2), 1.68–1.63 (m, 2H,  CH2), 0.98–0.94 (t, 3H, 
 CH3); 13C-NMR (DMSO-d6): δ = 160.4, 154.7, 150.8, 

149.4, 146.2, 134.2, 131.3, 129.3, 127.1, 42.4, 20.6, 
11.0 ppm; MS: m/z (%) = M+, 283 (16), 255 (20), 254 (38), 
213 (17), 171 (13), 105 (100), 104 (13), 103 (10), 77 (29); 
Anal. calcd. for  C14H13N5O2 (283.28): C, 59.36; H, 4.63; 
N, 24.72. Found: C, 59.58; H, 4.71; N, 24.89.

3‑(4‑Chlorophenyl)‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑dione (6b)
Yield: 78%; m.p. = 258–260 °C; IR (KBr) νmax  (cm−1): 3135 
(NH), 3034 (CH arom.), 2972, 2839 (CH aliph.), 1725, 
1672 (C=O), 1586 (C=N), 1553 (C=C), 841 (p-substi-
tuted phenyl); 1H-NMR (DMSO-d6): 12.32 (s, 1H, NH), 
8.42–8.40 (d, 2H, J = 8.4  Hz,  Harom), 7.69–7.67 (d, 2H, 
J = 8.4 Hz,  Harom), 4.25–4.21 (t, 2H,  CH2), 1.76–1.71 (m, 
2H,  CH2), 0.98–0.94 (t, 3H,  CH3); 13C-NMR (DMSO-d6): 
δ = 160.2, 158.1, 150.8, 149.3, 136.2, 134.4, 134.0, 129.3, 
128.6, 42.9, 20.3, 11.0 ppm; MS: m/z (%) = M + 2, 319 (6), 
 M+, 317 (17), 290 (24), 289 (26), 288 (64), 249 (14), 247 
(40), 141 (31), 139 (100),; Anal. calcd. for  C14H12ClN5O2 
(317.73): C, 52.92; H, 3.81; N, 22.04. Found: C, 53.14; H, 
3.87; N, 22.27.

3‑(4‑Bromophenyl)‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑dione (6c)
Yield: 76%; m.p. = 250–252 °C; IR (KBr) νmax  (cm−1): 3180 
(NH), 3084 (CH arom.), 2809 (CH aliph.), 1712, 1675 
(C=O), 1579 (C=N), 1545 (C=C) 845 (p-substituted phe-
nyl); 1H-NMR (DMSO-d6): 12.22 (s, 1H, NH), 8.35–8.33 
(d, 2H, J = 8.8  Hz,  Harom), 7.84–7.82 (d, 2H, J = 8.8  Hz, 
 Harom), 4.25–4.21 (t, 2H,  CH2), 1.77–1.71 (m, 2H,  CH2), 
0.98–0.94 (t, 3H,  CH3); 13C-NMR (DMSO-d6): δ = 160.0, 
158.2, 150.8, 149.1, 134.5, 132.3, 131.3, 129.0, 125.2, 
42.9, 20.3, 11.0 ppm; MS: m/z (%) = M + 2, 364 (2),  M+, 
362 (3), 258 (29), 257 (15), 256 (15), 254 (24), 222 (100), 
202 (31), 188 (20), 187 (22), 164 (22), 163 (21), 121 (24), 
69 (64), 44 (78), 40 (53); Anal. calcd. for  C14H12BrN5O2 
(362.18): C, 46.43; H, 3.34; N, 19.34. Found: C, 46.71; H, 
3.39; N, 19.51.

3‑(4‑Hydroxyphenyl)‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑dione (6d)
Yield: 82%; m.p. = 236–238  °C; IR (KBr) νmax  (cm−1): 
3170 (NH), 3026 (CH arom.), 2833 (CH aliph.), 1722, 
1677 (C=O), 1558 (C=N), 1537 (C=C), 846 (p-substi-
tuted phenyl); 1H-NMR (DMSO-d6): 12.22 (s, 1H, NH), 
8.24–8.22 (d, 2H, J = 8.4  Hz,  Harom), 6.74–6.72 (d, 2H, 
J = 8.4 Hz,  Harom), 3.79–3.76 (t, 2H,  CH2), 1.69–1.63 (m, 
2H,  CH2), 0.89–0.85 (t, 3H,  CH3); MS: m/z (%) = M+, 299 
(17), 271 (22), 256 (20), 223 (34), 222 (40), 221 (100), 105 
(60), 100 (94), 98 (76), 84 (33), 83 (29), 77 (29), 69 (31), 
57 (26); Anal. calcd. for  C14H13N5O3 (299.28): C, 56.18; H, 
4.38; N, 23.40. Found: C, 56.34; H, 4.47; N, 23.62.
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3‑(4‑Nitrophenyl)‑8‑propylpyrimido[5,4‑e][1,2,4]tria‑
zine‑5,7(6H,8H)‑dione (6c)
Yield: 70%; m.p. = 267–268  °C; IR (KBr) νmax  (cm−1): 
3165 (NH), 3067 (CH arom.), 2974, 2811 (CH aliph.), 
1720,1702 (C=O), 1606 (C = N), 1559 (C=C), 1518 
 (NO2asymstr),1346  (NO2symstr), 844 (p-substituted phe-
nyl); 1H-NMR (DMSO-d6): 12.31 (s, 1H, NH), 8.66–8.62 
(d, 2H, J = 9.2  Hz,  Harom), 8.46–8.43 (d, 2H, J = 9.2  Hz, 
 Harom), 4.25–4.21 (t, 2H,  CH2), 1.75–1.70 (m, 2H,  CH2), 
0.98–0.94 (t, 3H,  CH3); 13C-NMR (DMSO-d6): δ = 162.0, 
156.9, 151,4, 151.2, 148.9, 140.4, 134.2, 128.2, 124.4, 42.8, 
20.4, 11.1  ppm; MS: m/z (%) = M+, 328 (11), 300 (18), 
299 (63), 258 (32), 244 (21), 151 (42), 150 (100), 104 (18), 
76 (20), 65 (21), 43 (23); Anal. calcd. for  C14H13N5O3 
(328.28): C, 51.22; H, 3.68; N, 25.60. Found: C, 51.37; H, 
3.65; N, 25.81.

6‑[2‑(1‑Arylethylidene)hydrazino]‑1‑propylpyrimi‑
dine‑2,4(1H,3H)‑diones (7a,b)
A mixture of 6-hydrazinyl-1-propyluracil (4) (2.72 mmol) 
and appropriate acetophenones (2.72  mmol) in ethanol 
(30  mL) is stirred at room temperature for 3–4  h. The 
formed precipitate is collected by filtration, washed with 
ethanol and crystallized from ethanol.

6‑[2‑(1‑Phenylethylidene)hydrazino]‑1‑propylpyrimi‑
dine‑2,4(1H,3H)‑dione (7a)
Yield: 83%; m.p. = 207–208  °C; IR (KBr) νmax  (cm−1): 
3154 (NH), 3052 (CH arom.), 2963, 2870 (CH aliph.), 
1715, 1691 (C=O), 1602 (C=N), 1499 (C=C); 1H-NMR 
(DMSO-d6): 11.06 (s, 1H, NH), 8.96 (s, 1H, NH), 7.90–
7.82 (dd, 2H, J = 9.2 Hz,  Harom), 7.44–7.43 (m, 3H, arom.), 
5.39 (s, 1H, CH-5), 3.92–3.90 (t, 2H,  CH2), 2.37 (s, 3H, 
α-CH3), 1.68–1.63 (m, 2H,  CH2), 0.93–0.87 (t, 3H,  CH3); 
13C-NMR (DMSO-d6): δ = 166.5, 162.5, 161.1, 151.2, 
137.6, 129.6, 128.5, 126.5, 78.8, 43.3, 20.2, 14.3, 11.3 ppm; 
MS: m/z (%) = M+, 286 (44), 271 (44), 257 (21), 167 (36), 
159 (64), 158 (64), 144 (45), 131 (40), 124 (20), 120 (100), 
118 (48), 104 (72), 103 (38), 96 (21), 78 (30), 77 (96); Anal. 
calcd. for  C15H18N4O2 (286.32): C, 62.92; H, 6.34; N, 
19.57. Found: C, 63.14; H, 6.39; N, 19.71.

6‑[2‑{1‑[4‑(Dimethylamino)phenyl]ethylidene}
hydrazino]‑1‑propylpyrimidine‑2,4 (1H,3H)‑dione (7b)
Yield: 79%; m.p. = 258–260  °C; IR (KBr) νmax  (cm−1): 
3188 (NH), 3069 (CH arom.), 2961 (CH aliph.), 1704 
(C=O), 1593 (C=N), 1504 (C=C), 858 (p-substituted 
phenyl); 1H-NMR (DMSO-d6): 11.11 (s, 1H, NH), 9.13 (s, 
1H, NH), 8.29–8.26 (d, 2H, J = 8.8 Hz,  Harom), 8.16–8.13 
(d, 1H, J = 8.8  Hz,  Harom), 8.10–8.08 (d, 1H, J = 8.8  Hz, 
 Harom), 5.48 (s, 1H, CH-5), 4.02–3.94 (t, 2H,  CH2), 3.29 (s, 
6H,  2CH3), 2.42 (s, 3H, α-CH3), 1.68–1.64 (m, 2H,  CH2), 
0.94–0.89 (t, 3H,  CH3); 13C-NMR (DMSO-d6): δ = 166.5, 

162.5, 159.7, 151.1, 150.9, 144.0, 127.3, 123.6, 79.8, 43.4, 
42.4, 20.2, 14.2, 11.3  ppm; MS: m/z (%) = M+, 329 (2), 
302 (100), 289 (8), 274 (21), 203 (34), 149 (21), 124 (12), 
117 (55), 96 (21); Anal. calcd. for  C17H23N5O2 (329.39): 
C, 61.99; H, 7.04; N, 21.26. Found: C, 62.12; H, 7.18; N, 
21.49.

5‑[(Dimethylamino)methylene]‑1‑propylpyrimi‑
dine‑2,4,6(1H,3H,5H)‑trione 6‑{[1‑phenylethylidene]hydra‑
zone} (8)
Method A A solution of 6-[2-(1-phenylethylidene)
hydrazino]-1-propylpyrimidine-2,4(1H,3H)-dione (7a) 
(0.7 mmol) in dimethylformamide-dimethylacetal (4 mL) 
is heated under reflux for 1  h. The reaction mixture is 
evaporated under reduced pressure. The residue is treated 
with ethanol (10  mL); the formed precipitate is filtered, 
washed with ethanol, and crystallized from DMF/ethanol 
(1:3) to afford compound 8.

Method B A solution of 6-[2-(1-phenylethylidene)
hydrazino]-1-propylpyrimidine-2,4(1H,3H)-dione (7a) 
(0.7 mmol) in dimethylformamide-dimethylacetal (1.5 mL) 
and DMF (1.5 mL) is heated under reflux for 15 min. The 
reaction mixture is evaporated under reduced pressure. 
The residue is treated with ethanol (10  mL); the formed 
precipitate is filtered, washed with ethanol, and crystal-
lized from DMF/ethanol (1:3) to afford compound 8.

Yield: method A 90%, method B 94%; m.p. = 220–
221  °C; IR (KBr) νmax  (cm−1): 3136 (NH), 3030 (CH 
arom.), 2952, 2866 (CH aliph.), 1690, 1656 (C=O), 1562 
(C=N), 1512 (C=C); 1H-NMR (DMSO-d6): 10.13 (s, 
1H, NH), 8.08 (s, 1H, CH), 7.73–7.71 (d, 2H, J = 7.6 Hz, 
 Harom), 7.45–7.36 (m, 3H, arom.), 3.97–3.94 (t, 2H, 
 CH2), 3.19 (s, 3H, N-CH3), 3.05 (s, 3H, N-CH3), 2.39 
(s, 3H,  CH3), 1.69–1.64 (m, 2H,  CH2), 0.92–0.88 (t, 3H, 
 CH3); 13C-NMR (DMSO-d6): δ = 163.8, 159.3, 155.0, 
153.6, 151.0, 138.5, 128.6, 128.3, 125.4, 83.0, 46.2, 42.9, 
42.7, 20.5, 14.0, 11.3 ppm; MS: m/z (%) = M+, 341 (100), 
325 (35), 297 (63), 296 (49), 160 (37), 123 (30), 103 (42), 
91 (24), 77 (42), 42 (24); Anal. calcd. for  C18H23N5O2 
(341.40): C, 63.32; H, 6.79; N, 20.51. Found: C, 62.95; H, 
7.34; N, 20.39.

5‑Methyl‑2‑(1‑phenylvinyl)‑7‑propyl‑2H‑pyrazolo[3,4‑d]
pyrimidine‑4,6(5H,7H)‑dione (9)
Method A A solution of 6-[2-(1-phenylethylidene) 
hydrazino]-1-propyl-pyrimidine-2,4(1H,3H)-dione (7a) 
(1.05  mmol) in dimethylformamide-dimethyl acetal 
(1.5  mL) and DMF (1.5  mL) is heated under reflux for 
1  h. The reaction mixture is evaporated under reduced 
pressure. The residue is treated with ethanol (10 mL), the 
formed precipitate is filtered, washed with ethanol, and 
crystallized from DMF/ethanol (1:3) to afford compound 9.
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Method B A mixture of 6-[2-(1-phenylethylidene)
hydrazino]-1-propyl- pyrimidine-2,4(1H,3H)-dione (7a) 
(1.05  mmol) and dimethylformamide-dimethylacetal 
(3 mL) is heated under reflux for 12 h. The reaction mix-
ture is evaporated under reduced pressure. The residue 
is treated with ethanol (10 mL), the formed precipitate is 
filtered, washed with ethanol, and crystallized from DMF/
ethanol (1:3) to afford compound 9.

Method C A mixture of 5-[(dimethylamino)methylene]-
1-propylpyrimidine-2,4,6(1H,3H,5H)-trione 6-{[1-pheny-
lethylidene]hydrazone} (8) (1.17 mmol) and DMF-DMA 
(3 mL) is heated under reflux for 1 h. The reaction mix-
ture is evaporated under reduced pressure. The residue 
is treated with ethanol (15 mL), the formed precipitate is 
filtered, washed with ethanol, and crystallized from DMF/
ethanol (1:3) to afford compound 9.

Yield: method A 82%, method B 74%, method C 92%; 
m.p. = 148–149  °C; IR (KBr) νmax  (cm−1): 3095 (CH 
arom.) 2950, 2875 (CH aliph.), 1760, 1701 (C=O), 1591 
(C=N), 1546 (C=C); 1H-NMR (DMSO-d6): 8.60 (s, 
1H, CH-3), 7.44–7.36 (m, 5H, arom.), 5.71–5.61 (dd, 
2H, =CH2), 3.87–3.83 (t, 2H,  CH2), 3.23 (s, 3H,  CH3), 
1.69–1.64 (m, 2H,  CH2), 0.86–0.83 (t, 3H,  CH3); 13C-
NMR (DMSO-d6): δ = 157.8, 151.0, 150.3, 144.6, 134.2, 
131.8, 129.5, 128.5, 127.3, 109.0, 101.7, 44.7, 27.6, 20.2, 
11.0  ppm; MS: m/z (%) = M+, 310 (100), 268 (75), 267 
(54), 224 (65), 122 (64), 103 (67),77 (34); Anal. calcd. for 
 C17H18N4O2 (310.35): C, 65.79; H, 5.85; N, 18.05. Found: 
C, 66.01; H, 5.89; N, 18.24.

2,5‑Dimethyl‑7‑propyl‑2H‑pyrazolo[3,4‑d]pyrimi‑
dine‑4,6(5H,7H)‑dione (11)
A solution of 6-hydrazinyl-1-propyluracil (4) (1.63 mmol) 
in dimethylformamide-dimethylacetal (1.5 mL) and DMF 
(1.5 mL) is heated under reflux for 1 h. The reaction mix-
ture is evaporated under reduced pressure. The residue 
is treated with ethanol (10  mL), the formed precipitate 
is filtered, washed with ethanol, and crystallized from 
DMF/ethanol (1:3) to afford compound 11.

Yield: 88%; m.p. = 167–169  °C; IR (KBr) νmax  (cm−1): 
3094 (CH arom.), 2951, 2877 (CH aliph.), 1751, 1698 
(C=O), 1586 (C=N), 1544 (C=C); 1H-NMR (DMSO-
d6): 8.41 (s, 1H, CH-3), 3.88 (s, 1H, N(2)-CH3), 3.87–3.83 
(t, 2H,  CH2), 3.19 (s, 3H, N(5)-CH3), 1.70–1.65 (m, 2H, 
 CH2), 0.90–0.86 (t, 3H,  CH3); 13C-NMR (DMSO-d6): 
δ = 157.9, 151.0, 149.8, 131.8, 100.1, 44.7, 40.4, 27.5, 
20.3, 11.0  ppm; MS: m/z (%) = M+, 222 (30), 180 (52), 
135 (100), 123 (28), 42 (15); Anal. calcd. for  C10H14N4O2 
(222.24): C, 54.04; H, 6.35; N, 25.21. Found: C, 54.13; H, 
6.43; N, 25.45.

Biological investigation
Evaluation of the antitumor activity
Mammalian cell lines
The cell line that used in this study was human lung car-
cinoma cell line (A549 cells) is obtained from tissue cul-
ture Unit, VACSERA, Cairo, Egypt.

The mammalian cells are propagated in Dulbecco’s 
modified Eagle’s [41] medium (DMEM) or RPMI-1640 
depending on the type of cell line supplemented with 
10% heat-inactivated fetal bovine serum, 1% l-glutamine, 
HEPES buffer and 50  µg/mL gentamycin. All cells are 
maintained at 37  °C in a humidified atmosphere with 
5%  CO2 and are subcultured two times a week along 
experimentation.

i‑Antitumor activity evaluation using viability assay
Antitumor activity assay is carried out according to the 
method described literature [42]. All the experiments 
concerning the cytotoxicity evaluation are performed 
and analyzed by tissue culture unit at the regional center 
for mycology and biotechnology RCMB, Al-Azhar Uni-
versity, Cairo, Egypt.

Procedure
The A549 tumor cells are seeded in 96-well plate in 
100  µL of growth medium at a cell concentration of 
1 × 104 cells/well. After 24 h of seeding, the monolayers 
are then washed with sterile phosphate buffered saline 
(0.01 M pH 7.2) and simultaneously the cells are treated 
with 100  µL from different dilutions of the test sample 
in fresh maintenance medium and incubated at 37  °C. 
Different two-fold dilutions of the tested compound 
(started from 500 to 0.25  µM) are added to confluent 
cell monolayers dispensed into 96-well, flat-bottomed 
microtiter plates (Falcon, NJ, USA) using a multichannel 
pipette. The microtiter plates are incubated at 37 °C in a 
humidified incubator with 5%  CO2 for a period of 72 h. 
Untreated cells are served as controls. Three independ-
ent experiments are performed each containing six rep-
licates for each concentration of the tested samples. The 
cytotoxic effects of the tested compounds are then meas-
ured using crystal violet staining viability assay. Briefly, 
after 72 h of treatment, the medium is removed, 100 μL 
of 0.5% of crystal violet in 50% methanol is added to each 
well and incubated for 20 min at room temperature and 
subsequently excess dye is washed out gently by distilled 
water. The plate is allowed to dry then the viable crys-
tal violet-stained cells are lysed using 33% glacial acetic 
acid solution. Absorbance at 570 nm is then measured in 
each well using microplate reader (Sunrise, TECAN, Inc, 
USA). Toxoflavin and 5-fluorouracil are used as positive 
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control. The absorbance is proportional to the number of 
surviving cells in the culture plate.

Conclusions
A series of newly synthesized compounds of substi-
tuted benzaldehyde-pyrimidin-4-yl)hydrazones (5a–f), 
pyrimido[5,4-e][1,2,4]triazines 6a–e, arylethylidenehy-
drazinylpyrimidines 7a,b and pyrazolopyrimidines 9,11 
are prepared via a simple method starting from the sub-
strate 6-hydrazinyl-1-propyluracil (4). The synthesized 
compounds exhibited good cytotoxic activity against 
human lung carcinoma (A549) cell line and the high-
est effect is measured for compound 6b with  IC50 value 
3.6 μM, followed by compounds 9, 5a, 8, 5e, 6e, 5b, 5f, 
7a, 5c, 6c, 7b, 6a, 11, 5d and 6d with  IC50 values of 26.3, 
26.8, 28.4, 49.3, 53.8, 54.7, 60.2, 60.5, 74.3, 81.5, 104.6, 
107.1, 123, 238.7, and 379.4 μM, compared with reference 
drug 5-fluorouracil (10.5 μM).
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