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Abstract 

An efficient one pot method for the synthesis of α-alkoxymethylphosphonium iodides is developed by using  PPh3/
I2 combination at room temperature. Reaction conditions are found general to synthesize wide range of structurally 
variant alkoxymethylphosphonium iodides in high yield (70–91%). These new functionalized phosphonium salts are 
further used in stereoselective synthesis of vinyl ethers as well as in carbon homologation of aldehydes.
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Introduction
Functionalized phosphonium salts are gaining much 
attention for their diverse applications in organic syn-
thesis [1–5]. α-Alkoxymethyl phosphonium salts are 
largely used for carbon homologation to carbonyl com-
pounds [6–10] and also as significant synthetic interme-
diates [11–17]. Recently, unique reactivity of this class 
has been explored in nucleophilic substitution [18–20] 
and in novel phenyl transfer reactions [21, 22]. Methoxy-
methyltriphenylphosphonium chloride is commercially 
available salt from this class, but problem associated 
with its preparation involve toxic intermediate, higher 
temperature and long reaction time [9, 11, 23]. In per-
spective of alternative derivatives; α-methoxymethyl 
triphenylphosphonium iodide was reported by reac-
tion of bis-methoxymethane (1a) with TMSI, followed 
by phosphination of methoxymethyl iodide in benzene 
(Scheme  1a) [24]. This only available method for iodide 
analogue also involves sensitive and toxic; reagent, sol-
vent as well as intermediate along with difficult purifica-
tion of product. In past few years,  PPh3/I2 combination 

has successfully facilitated many functional groups inter-
conversions [25–32]. Therefore, we decided to explore 
reactivity of  PPh3/I2 with bis-alkoxymethanes (1) and 
herein efficient synthesis of a broad range of structurally 
diverse α-alkoxymethyl triphenylphosphonium iodides 
(2) is being reported (Scheme 1b). To best of our knowl-
edge, this is the first report on general one pot synthesis 
of O,P-acetals, directly from dioxacetals on employing 
 PPh3/I2 combination (Scheme 1b).

Results and discussion
Current study was initiated from the model reaction of 
bis-butoxy methane (1a) with  PPh3/I2 combination under 
different conditions (Table  1). Our preliminary attempt 
was encouraging, where 27% desired conversion (2a) was 
observed on refluxing equal molar amounts of acetal (1a) 
and  PPh3/I2 in toluene for an hour (Table 1, entry 1). To 
improve the yield, reaction time was increased up to 3 h 
but only 33% required conversion was observed (Table 1, 
entry 2). Low yield might be associated with the sub-
limation of iodine at high temperature therefore, it was 
considered to decrease the reaction temperature. To our 
delight, yield was increased to 55% when the same exper-
iment was performed at room temperature (Table  1, 
entry 3). Increasing the amount of  PPh3 to 2 equivalent 
and reaction time up to 5  h further improved the yield 
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(80%) (Table 1, entry 4). However, further attempts with 
increase in reaction time and replacing toluene with ace-
tonitrile or solvent free conditions, were not effectual 
(Table 1, entry 5–8).

To explore the substrate scope of this reaction, opti-
mized conditions were employed to structurally different 
bis-alkoxy methanes (1a–j, see Additional file 1) [33]. The 
method was found equally efficient to obtain broad range 
of alkoxymethylphosphonium iodides (2a–j, Table  2) 
based on primary, secondary, tertiary and benzylic alkoxy 
groups. Acetals having simple methoxy, ethoxy, benzoxy 
and phenylethoxy groups provided desired O,P-acetals 
2b–e in 75–87%. Similarly, when acetal of (S)-2-butanol 
was reacted with  PPh3/I2, corresponding salt 2f was 
obtained in 90% yield with retention in configuration, 
which was ultimately confirmed by X-ray diffraction 
analysis (Fig. 1). 

Optimized reaction conditions were further extended 
to cyclic chiral alkoxy groups including fenchyl, menthyl 

and borneyl, where respective chiral phosphonium salts 
2g–i were obtained in good yields (Table 2).

Here, (+)-menthoxymethyltriphenylphosphonium 
iodide 2h is worth mentioning as its chloride analogue 
was prepared by tedious methodology with long reaction 
time [12]. Interestingly, the reaction was also successful 
with acetal of t-butanol where corresponding salt 2j was 
produced in 77% yield (Table 2).

In terms of mechanism, we envision that initially  I2 
and  PPh3 generate phosphonium intermediate (i), which 
reacts with bis-alkoxymethane 1 to provide oxonium 
intermediate (ii) (Scheme 2). Another equivalent of  PPh3 
attack on oxonium intermediate (ii) to transform it into 
the target O,P-acetal 2 (Scheme 2).

After having a range of alkoxymethylphosphonium 
iodides in hand, we further explored their applications 
in organic synthesis. Vinyl ethers also known as enol 
ethers are considered important synthetic targets for the 
organic chemists. They itself are part of many natural 
products and also involve as intermediate in their total 
synthesis [34–36]. They act as key intermediates in many 
important organic reactions like Diels–Alder reaction 
[37], Coupling reaction [38–43], Olefin metathesis [44], 
Claisen rearrangement [45, 46] and Nazarov cyclization 
[47, 48]. They are also used in materials sciences due to 
their polymerization ability through cationic mecha-
nism [49]. Despite extensive applications of enol ethers, 
still there is lack of general and direct method for their 
synthesis. Metal-catalyzed couplings are the most com-
mon available method [50–54], along with some other 
indirect methodologies [55–62]. Direct synthesis of enol 
ethers by a Wittig reaction with alkoxymethylphospho-
nium salt is though an evident concept but no system-
atic study is found in literature. Most often commercially 
available methoxymethylphosphonium chloride is used 
[63, 64], whereas effect of other alkoxy groups as well as 
counter anions is still need to explore. For this purpose, 

a

b

Scheme 1 Synthesis of α-alkoxymethyl triphenylphosphonium iodides 2 

Table 1 Conditions optimization for  conversion 
of dioxacetal to O,P-acetal (2a) 

a Best optimized conditions

Entry Solvent Time (h) Temperature (°C) Yield (%)

1 Toluene 01 80 27

2 Toluene 03 80 33

3 Toluene 03 Room temp 55

4a Toluene 05 Room temp 80

5 Toluene 06 Room temp 69

6 – 02 Room temp 35

7 Acetonitrile 04 40 17

8 Acetonitrile 02 80 Traces
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Table 2 PPh3/I2 mediated synthesis of alkoxymethylphosphonium iodides (2a–j)

2a 80 % 2b  75 % 2c 82% 2d  87 %

2e 81 % 2f 90 % 2g 91 %

2h 80 % 2i 70 % 2j 77 %

Fig. 1 ORTEP diagram of (S)-2-sec-butoxymethyltriphenylphosphonium iodide 2f 
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at first ethoxymethyltriphenylphosphanium iodide 2c 
was reacted with benzaldehyde and its derivatives in the 
presence of n-BuLi, which afforded corresponding vinyl 
ethers 3a–d (Table 3) in good yield (67–71%) and selec-
tivity (69–73% trans).

Providentially, trans isomer 3e′ was obtained almost 
exclusively (99% selectivity) with (+)-menthoxymeth-
yltriphenylphosphonium iodide 2h. Earlier, Fuwa and 
Sasaki obtained same isomer 3e′ in 9% yield along with 
36% cis isomer 3e through Pd coupling [40].

Further, cost effective n-butoxymethylphosphonium 
iodide 2a was employed for carbon homologation, where 
both aliphatic and aromatic aldehydes were successfully 
converted to higher analogous 4 in good yield (Table 4). 
Results show that these directly prepared and environ-
mentally benign salts are good alternative to their chlo-
ride analogues.

To evaluate catalytic potential of chiral phosphonium 
salts in asymmetric reduction of acetophenone, initially 
10 mol% of 2g with  NaBH4 provided (R)-1-phenylethanol 
with 92% yield and 4% ee (Scheme 3).

Detailed study and further investigation on 
the application of these structurally unique 
α-alkoxymethylphosphonium salts in stereoselective 
synthesis of enol ethers carrying chiral auxillaries as well 
as in other related fields are currently underway in our 
laboratory.

Conclusion
In conclusion, a facile general method for the synthe-
sis of α-alkoxymethyl triphenylphosphonium iodides 
is developed under very mild conditions. This protocol 
demonstrates  PPh3/I2 mediated green route to function-
alized phosphonium salts. Major advantage of this meth-
odology is to avoid toxic reagent and intermediate. These 
easily prepared salts were successfully employed for ste-
reoselective synthesis of enol ethers as well as for carbon 
homologation in aldehydes. The new methodology will 
be useful for organic synthetic chemists as well as others 
working in associated fields.

Experimental
All experiments were carried out under inert atmos-
phere using standard Schlenk technique with oven 
dried glassware and magnetic stirring. All solvents were 
freshly dried and distilled before use. All chemicals were 
purchased from Sigma Aldrich, Alfa Aesar and Merck. 
IR spectra were measured on a Perkin–Elmer Paragon 
1000 (thin film) or on a Perkin–Elmer BXII spectrom-
eter (neat). Bruker Avance NMR spectrometer of 300, 
400 and 500  MHz were used for NMR spectral studies. 
Optical rotation was measured on Polarimeter P-2000. 
Crystal structure was confirmed by single crystal X-ray 
diffractometer Bruker Enrauf–Nonius Apex smart and 
Siemens P4. Mass spectra were measured on GC–MS 

Scheme 2 Plausible mechanism for the preparation of alkoxymethylphosphonium iodides 2 
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5977A, MAT312-EI, JEOL-600H-2, and JEOL MS-
600H-1. Reactions were monitored by TLC plates from 
Merck (silica gel 60  F254, aluminum oxide 60  F254). TLCs 
were visualized by UV fluorescence and phosphomolyb-
dic acid spraying reagent.

General procedure for synthesis of α‑alkoxymethyltriphen
ylphosphonium iodides (2a–j)
In a seal tube triphenylphosphine (20 mmol) and iodine 
(1.1 equiv) were taken in toluene (4  mL) and mixture 
was allowed to stir for 5  min. Solution of bis-alkoxym-
ethane (1, 10  mmol in 1  mL toluene) was added to the 
reaction mixture and allowed to stir for 5 h at room tem-
perature (28  °C). After completion of reaction, solvent 
was removed under reduced pressure and residue was 
washed with hexane to obtain required salt.

Butoxymethyltriphenylphosphonium iodide (2a)
Lemon yellow thick oil, yield = 80%, IR: υ  (cm−1) = 689, 
730, 1115, 1302, 1412, 2835. 1H-NMR (300  MHz, 
MeOD): δ ppm. 7.93–7.91 (3H, m, CH aromatic), 7.90–
7.89 (3H, m, CH aromatic), 7.88–7.79 (2H, m, CH aro-
matic), 7.78–7.76 (3H, m, CH aromatic), 7.76–7.75 (3H, 
m, CH aromatic), 7.74–7.72 (1H, m, CH aromatic), 5.40 
(2H, d, J = 4.8,  CH2), 3.71 (2H, t, J = 6.4,  CH2), 1.56–1.51 
(2H, m,  CH2), 1.28–1.22 (2H, m,  CH2), 0.84 (3H, t, J = 7.6, 
 CH3). 13C-NMR (75 MHz, MeOD): δ ppm. 136.62, 136.60 
(2 carbons), 135.25, 135.15, 133.74 (3 carbons), 133.08, 

Table 3 α-Alkoxymethylphosphonium iodides 2 in synthesis of vinyl ethers 3 

Entry Phosphonium salt
2

Aldehyde Vinyl ether
3

Yield
%

Cis:Transa

1.  71 27:73

2.  69 31: 69

3.  67 30:70

4.  62 37:63

5.  43 1:99

a Determined by 1H-NMR

Table 4 α-Butoxymethylphosphonium iodide 2a in carbon 
homologation of aldehydes

Entry Substrate Product (4) Yield (%)

1. PhCHO PhCH2CHO 72

2. EtCHO n-PrCHO 71

3. n-PrCHO n-BuCHO 73

4. n-BuCHO n-PentCHO 70
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132.97 (3 carbons), 131.55, 131.42, 130.01, 129.89 (2 
carbons), 118.60, 117.74, 75.88, 35.76, 20.07, 13.99. 31P 
(202  MHz,  CDCl3): δ ppm 18.83. EIMS = 349  (M+-I), 
277.2 (48.4%), 262.2 (100%), 183.1 (59.6%), 108.0 (57.2%), 
56 (36.3%).

Methoxymethyltriphenylphosphonium iodide (2b) [25]
Lemon yellow thick oil, yield = 73%, IR: υ  (cm−1) = 691, 
724, 1112, 1437, 2877, 2958. 1H-NMR (300 MHz,  CDCl3): 
δ ppm 7.69–7.66 (3H, m, C–H aromatic), 7.65–7.61 (5H, 
m, C–H aromatic), 7.59–7.57 (2H, m, C–H aromatic), 
7.56–7.51 (5H, m, C–H aromatic), 5.56 (2H, d, J = 3.9, 
 CH2), 3.51 (3H, s,  CH3). 13C-NMR (75  MHz,  CDCl3): δ 
ppm. 135.77, 135.39, 135.35, 134.34 (3 carbons), 133.97, 
133.84, 133.62, 133.49 (2 carbons), 130.78, 130.47, 130.30, 
130.05, 129.89 (3 carbons), 116.85, 66.19. 31P (202 MHz, 
 CDCl3): δ ppm 17.53. EIMS = 307  (M+-I), 277.2 (100%), 
262.2 (67.6%), 183.1 (54.9%), 108.0 (10.9%), 77.0 (9.8%), 
50.9 (5.6%).

Ethoxymethyltriphenylphosphanium iodide (2c)
Colorless oil: yield = 82%, IR: υ  (cm−1) = 2846, 2794, 
1946, 1586, 1484, 1437, 1317, 1112, 1092; 1H NMR 
(400 MHz,  CDCl3) δ = 7.77–7.70 (9H, m), 7.65–7.60 (6H, 
m), 5.72 (2H, d, J = 3.96), 3.85 (2H, q, J = 7.0), 1.09 (3H, 
t, J = 7.0); 13C NMR (100 MHz,  CDCl3) δ = 135.3, 135.3, 
134.0 (3C), 133.9, 132.0 (3C), 131.9, 130.4, 130.3 (3C), 
128.5, 128.4 (3C), 116.5, 64.21, 14.93; 31P-NMR  (CDCl3): 
δ 25.77; HRMS +ESI calculated for  C21H22OP: 321.1403; 
found 321.1404.

Benzoxymethyltriphenylphosphonium iodide (2d)
Yellow thick oil, yield = 87%, IR υ  (cm−1) = 681, 734, 1103, 
1305, 1425, 2767. 1H-NMR (300  MHz, MeOD): δ ppm. 
7.82–7.76 (3H, m, CH aromatic), 7.75–7.71 (3H, m, CH 
aromatic), 7.70–7.67 (3H, m, CH aromatic), 7.66–7.62 
(2H, m, CH aromatic), 7.58–7.55 (3H, m, CH aromatic), 
7.48–7.45 (3H, m, CH aromatic), 7.37–7.29 (3H, m, CH 
aromatic), 5.72 (2H, d, J = 3,  CH2), 4.97 (2H, s,  CH2). 
13C-NMR (75 MHz, MeOD): δ ppm. 134.57 (3 carbons), 
133.60 (4 carbons), 133.19 (3 carbons), 132.33, 131.91 

(4 carbons), 130.49 (4 carbons), 129.78, 129.41 (4 car-
bons), 97.76, 78.39. 31P (202 MHz, MeOD): δ ppm 17.55. 
EIMS = 383  (M+-I), 277.2 (59.6%), 262.2 (100%), 183.1 
(48.4%), 108.0 (10.9%), 50.9 (9.8%).

Phenethoxymethyltriphenylphosphonium iodide (2e)
Yellowish powder, m.p = 171–173  °C, yield = 81%, IR υ 
 (cm−1) = 690, 730, 1124, 1317, 2917. 1H-NMR (300 MHz, 
 CDCl3): δ ppm. 7.78–7.36 (20H, m, CH aromatic), 5.45 
(2H, d, J = 1.2  Hz,  CH2), 4.21 (2H, t, J = 6.4,  CH2), 2.75 
(2H, t, J = 7.2,  CH2). 13C-NMR (75 MHz,  CDCl3): δ ppm. 
138.43 (4 carbons), 137.98, 137.81 (2 carbons), 137.23, 
136.31 (4 carbons), 136.06, 135.78, 135.23, 134.94 (3 car-
bons), 134.24, 129.81 (2 carbons), 129.12 (2 carbons), 
117.89, 94.67, 77.78, 37.54. 31P (202 MHz,  CDCl3): δ ppm 
17.74. EIMS = 397  (M+-I), 277.2 (100%), 262.2 (67.6%), 
183.1 (59.6%), 108.0 (13.4%), 91 (43%).

(S)‑sec‑Butoxymethyltriphenylphosphonium iodide (2f)
Yellowish white crystals, m.p = 58  °C, yield = 89%, 
[α]25D  = − 11 (c = 0.0018, MeOH), IR: υ  (cm−1) = 682, 709, 
1107, 1311, 1444, 2863. 1H-NMR (300  MHz, MeOD): δ 
ppm. 7.93–7.88 (3H, m, CH aromatic), 7.85–7.83 (1H, m, 
CH aromatic), 7.82–7.78 (3H, m, CH aromatic), 7.77–
7.67 (3H, m, CH aromatic), 7.64–7.63 (3H, m, CH aro-
matic), 7.63–7.60 (1H, m, CH aromatic), 7.56–7.54 (1H, 
m, CH aromatic), 5.51 (1H, dd, J = 13.5, 4.8,  CH2), 5.39 
(1H, dd, J = 13.5, 5.7,  CH2), 3.70–3.64 (1H, m, CH), 1.60–
1.43 (2H, m,  CH2), 1.18 (3H, d, J = 6.0  Hz,  CH3), 0.75 
(3H, t, J = 7.5,  CH3). 13C-NMR (75 MHz, MeOD): δ ppm. 
139.32, 135.11, 134.98, 134.72, 134.46, 133.95, 133.60, 
133.32, 133.00, 132.93, 132.60, 131.82, 131.27, 130.87, 
130.04, 129.90, 129.83, 128.60, 94.89, 79.51, 30.51, 20.10, 
10.09. 31P (202 MHz,  CDCl3): δ ppm 19.01. EIMS = 349 
 (M+-I), 277.2 (7.7%), 262.2 (55.9%), 183.1 (100%), 167.1 
(49.8%), 152.1 (14.8%), 108.0 (13.4%), 91.0 (43.9%).

Triphenyl((((2R)‑1,3,3‑trimethylbicyclo[2.2.1]heptan‑2‑yl)
oxy)methyl) phosphonium iodide (2g)
Lemon yellow thick oil, yield = 91%, [α]25D  = + 55 
(c = 0.004, MeOH), IR: υ  (cm−1) = 684, 968, 1112, 2948. 

Scheme 3 α-Alkoxymethylphosphonium iodide 2g in asymmetric reduction
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1H-NMR (300 MHz, MeOD): δ ppm. 7.89–7.83 (4H, m, 
CH aromatic), 7.82–7.80 (1H, m, CH aromatic), 7.80–
7.63 (4H, m, CH aromatic), 7.61–7.55 (3H, m, CH aro-
matic), 7.54–7.51 (3H, m, CH aromatic), 5.53 (2H, dd, 
J = 1.2, 4.8 Hz,  CH2), 3.10 (1H, d, J = 14.1, CH), 1.67–1.53 
(2H, m,  CH2), 1.49–1.37 (2H, m,  CH2), 1.06–1.01 (1H, m, 
CH), 1.06–0.96 (2H, m,  CH2), 0.91 (3H, s,  CH3), 0.83 (3H, 
s,  CH3), 0.73 (3H, s,  CH3). 13C-NMR (75 MHz,  CDCl3): 
δ ppm. 135.48, 135.45 (2 carbons), 134.26, 134.18, 132.06 
(3 carbons), 132.01, 131.99, 130.53 (3 carbons), 130.43, 
128.56, 128.47, 116.88, 116.20, 98.49, 66.63, 49.50, 
48.38, 41.18, 40.01, 31.10, 26.10, 25.80, 20.72, 19.93. 31P 
(202  MHz,  CDCl3): δ ppm 19.46. EIMS = 429  (M+-I), 
277.2 (48.4%), 262.2 (100%), 183.1 (59.6%), 108.0 (57.2%), 
56 (36.3%).

((((1S,2R)‑2‑isopropyl‑5‑methylcyclohexyl)oxy)methyl)
triphenylphosphonium iodide (2h)
Light yellow semisolid, yield = 80%, [α]25D  = + 8 (c = 0.027, 
MeOH), IR: υ  (cm−1) = 687, 963, 1112, 2914. 1H-NMR 
(300  MHz, MeOD): δ ppm. 7.91–7.90 (2H, m, CH aro-
matic), 7.89–7.88 (1H, m, CH aromatic), 7.88–7.87 (2H, 
m, CH aromatic), 7.86–7.83 (4H, m, CH aromatic), 
7.80–7.75 (1H, m, CH aromatic), 7.73–7.32 (1H, m, CH 
aromatic), 7.31–7.30 (1H, m, CH aromatic), 7.28–7.27 
(1H, m, CH aromatic), 7.30–7.25 (1H, m, CH aromatic), 
7.23–7.22 (1H, m, CH aromatic), 5.62 (1H, dd, J = 6.7, 
3.3,  CH2), 5.24 (1H, dd, J = 6.9, 2.9,  CH2), 3.44 (1H, td, 
J = 5.7, 9.6, CH), 2.32–2.23 (1H, m, CH), 1.69–1.57 (2H, 
m,  CH2), 1.41–1.33 (2H, m,  CH2), 1.23–1.19 (2H, m, 
 CH2), 0.95–0.91 (1H, m, CH), 0.79 (3H, d, J = 6.9,  CH3), 
0.75 (3H, d, J = 6.9,  CH3), 0.56 (3H, d, J = 6.9,  CH3). 13C-
NMR (75  MHz,  CDCl3): δ ppm. 135.32, 135.28, 134.32, 
134.18, 134.02, 133.87, 133.61, 132.20, 132.07, 130.48, 
130.32, 128.86, 128.66, 128.59, 128.50, 117.41, 116.27, 
83.81, 74.16, 48.28, 46.95, 40.90, 39.42, 34.21, 31.19, 
25.57, 23.41, 22.27, 16.18. 31P (202 MHz, MeOH): δ ppm 
19.19. EIMS = 431  (M+-I), 277.2 (100%), 262.2 (67.6%), 
183.1 (54.9%), 108.0 (10.9%), 77 (9.8%), 56 (36.3%).

Triphenyl((((2R)‑1,7,7‑trimethylbicyclo[2.2.1]heptan‑2‑yl)
oxy)methyl) phosphonium iodide (2i)
Light brown semi solid, yield = 70%, [α]25D  = + 2.13 
(c = 5 mg/15 mL MeOH), IR: υ  (cm−1) = 683, 981, 1114, 
2914. 1H-NMR (300  MHz,  CDCl3): δ ppm. 7.89–7.83 
(4H, m, CH aromatic), 7.82–7.80 (2H, m, CH aromatic), 
7.77–7.71 (4H, m, CH aromatic), 7.67–7.61 (3H, m, CH 
aromatic), 7.57–7.51 (2H, m, CH aromatic), 5.69 (2H, dd, 
J = 6, 12,  CH2), 3.03 (1H, dt, J = 3.9, 6.91, CH), 1.85–1.74 
(2H, m,  CH2), 1.65–1.64 (2H, m,  CH2), 1.63–1.57 (1H, 
m, CH), 1.53–1.38 (2H, m), 0.90 (3H, s,  CH3), 0.72 (3H, 
s,  CH3), 0.51 (3H, s,  CH3) 13C-NMR (75  MHz,  CDCl3): 
δ ppm. 135.3, 135.3, 134.0 (3C), 133.9, 132.0, 131.9, 

130.4, 130.3 (3C), 128.5 (3C), 128.4 (3C), 116.5 (d, J = 85), 
76.3, 49.0, 48.6, 41.5, 41.4, 39.2, 26.2, 21.0, 20.2, 19.8; 31P 
(202  MHz,  CDCl3): δ ppm 19.00. EIMS = 430  (M+-I), 
277.2 (7.7%), 262.2 (55.9%), 183.1 (100%), 167.1 (49.8%), 
152.1 (14.8%), 108.0 (13.4%), 91.0 (43.9%).

tert‑Butoxymethyltriphenylphosphonium iodide (2j)
Yellowish thick oil, yield = 77%, IR: υ  (cm−1) = 690, 713, 
1127, 1295, 1405, 2799. 1H-NMR (400  MHz, MeOD): δ 
ppm. 7.91–7.90 (2H, m, CH aromatic), 7.89–7.86 (4H, 
m, CH aromatic), 7.83–7.75 (3H, m, CH aromatic), 
7.34–7.31 (4H, m, CH aromatic), 7.25–7.23 (2H, m, CH 
aromatic), 5.45 (2H, dd, J = 1.6, 16.8,  CH2), 0.047 (9H, s, 
 CH3). 13C-NMR (75 MHz,  CDCl3): δ ppm. 136.69 (3 car-
bons), 136.63, 135.39, 135.27, 134.81, 134.76 (3 carbons), 
133.66, 133.13, 132.67, 131.13, 131.09, 129.79 (3 carbons), 
117.69, 89.54, 28.76 (3 carbons). 31P (202 MHz,  CDCl3): 
δ ppm 18.98. EIMS = 349  (M+-I), 277.2 (100%), 262.2 
(67.6%), 201.1 (24.5%), 183.1 (54.9%), 152.1 (11.4%), 108.0 
(10.9%), 77.0 (9.8%).

General method for synthesis of vinyl ethers 3a–e
In a two neck round bottom flask n-BuLi (1.5  eq) was 
added to stirred solution of phosphonium iodide 2 (1 eq) 
in THF at − 78 °C and mixture was allowed to stir under 
argon. After 20 min solution of aldehyde (1 eq) in THF 
was added drop wise at the same temperature and reac-
tion mixture was allowed to stir for further 4 h allowing 
the temperature to come to room temperature slowly. 
Reaction was monitored on TLC, after completion reac-
tion was quenched with methanol and solvent was evap-
orated under reduced pressure. Products were purified 
on silica gel column by combinations of ethyl acetate and 
pet ether as eluent.

2‑Ethoxyethenyl benzene (3a–a′, mixture of cis and trans 
isomers) [38]
1H NMR (400 MHz,  CDCl3) δ ppm. 8.00–7.97 (1H, m), 
7.62–7.56 (1H, m), 7.50–7.46 (1 H, m), 7.32–7.25 (5H, m), 
7.17–7.13 (1H, m), 7.01 (0.76H, d, J = 12.9), 6.23 (0.26H, 
d, J = 7.0), 5.86 (0.73H, d, J = 12.9), 5.24 (0.27H, d, J = 8.0), 
4.01 (0.56H, q, J = 7.2), 3.92 (1.5 H, q, J = 7.3), 1.46–
1.35 (6H, m); HRMS GC/MS calculated for  C10H12O: 
148.0883; found 148.0879.

1‑Chloro‑4[2‑ethoxyethenyl]benzene (3b–b′, mixture of cis 
and trans isomers) [39]
1H NMR (400 MHz,  CDCl3) δ ppm. 7.51–7.15 (4H, m), 
6.94 (0.69H, d, J = 12.0), 6.37 (0.31H, d, J = 8.0), 5.83 
(0.71H, d, J = 12.0), 5.69 (0.29H, d, J = 7.4), 3.95 (0.62H, q, 
J = 7.4), 3.86 (1.43H, q, J = 7.2), 1.34–1.26 (6H, m); HRMS 
GC/MS calculated for  C10H11OCl: 182.0493; found 
182.0501.
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1‑Bromo‑4[2‑ethoxyethenyl]benzene (3c–c′, mixture of cis 
and trans isomers) [42, 62]
1H NMR (400 MHz,  CDCl3) δ = 7.31–7.21 (4H, m), 7.01 
(0.73H, d, J = 12.8), 6.51 (0.29H, d, J = 7.1), 5.83 (0.70H, 
d, J = 12.8), 5.69 (0.31H, d, J = 7.3), 4.12 (1.42H, q, J = 7.2), 
3.93 (0.63H, q, J = 7.5), 1.45–1.37 (6H, m); HRMS GC/
MS calculated for  C10H11OBr: 225.9988; found 225.9988.

1‑[(1E & Z)‑2‑ethoxyethenyl]‑4‑methoxybenzene (3d–d′) [42, 
62]
(Mixture of cis and trans isomers) 1H NMR (400  MHz, 
 CDCl3) δ ppm 7.57–7.15 (4H, m), 6.79 (0.63H, d, 
J = 13.0), 6.13 (0.37H, d, J = 8.0), 6.10 (0.64H, d, J = 12.9), 
5.65 (0.38H, d, J = 7.8), 3.89 (4H, q, J = 7.5), 1.43 (6H, m). 
HRMS GC/MS calculated for  C11H14O2: 178.0988; found 
178.0991.

(E)‑(2‑((2‑isopropyl‑5‑methylcyclohexyl)oxy)vinyl)benzene 
(3e′) [40]
Colorless oil; yield = 43%, 1H NMR  (CDCl3, 400  MHz): 
δ ppm 7.28–7.22 (4H, m), 7.15–7.11 (1H, m), 6.92 (1H, 
d, J = 12.6), 5.93 (1H, d, J = 12.6), 3.62 (1H, td, J = 4.3), 
2.21–2.10 (2H, m), 1.72–1.71 (1H, m), 1.69–1.68 (1H, 
m), 1.58–1.52 (1H, m), 1.49–1.39 (2H, m), 1.11–1.01 (2H, 
m), 0.95 (3H, d, J = 6.16), 0.94 (3H, d, J = 6.6), 0.82 (3H, d, 
J = 6.9); 13C NMR  (CDCl3, 100 MHz): δ ppm 147.5, 136.7, 
128.6 (2C), 125.4 (2C), 124.9, 107.0, 81.6, 47.8, 41.4, 34.3, 
31.5, 25.8, 23.4, 22.1, 20.7, 16.4. HRMS GC/MS calcu-
lated for  C18H26O; 258.1984, found; 258.1987.

General method for carbon homologation in aldehydes
In a two neck round bottom flask containing phospho-
nim iodide 2a (1 eq) in dry THF (5 mL), n-BuLi (1.5 eq) 
was added dropwise at − 78 °C and mixture was allowed 
to stir for 30 min. Solution of aldehyde (1 eq) in THF was 
added dropwise to the phosphorene reaction mixture 
and further allowed to stir for 5 h. After acidic hydroly-
sis, crude product was extracted with EtOAc (10 mL × 2). 
Combined extract was dried over  Na2SO4, concentrated 
and purified on preparative TLC (silica gel) to obtain 
higher analogue of aldehydes (see Additional file 1).

General procedure for asymmetric reduction reaction
In a two-neck round bottom flask, acetophenone 
(1.5  mmol),  NaBH4 (2.25  mmol) along with iodide 
salt 2g (10  mol%) was taken in methanol (5  mL). Reac-
tion mixture was stirred for 2  h at room temperature. 
The reaction progress was monitored by TLC and after 
completion; the mixture was quenched with water and 
extracted EtOAc (2 × 3  mL). Combined organic layer 
was dried over  MgSO4 and the solvent was evaporated 
under reduced pressure to afford the corresponding (R)-
1-phenylethanol (92% yield, 4% ee). Enantiomeric excess 

(ee) was calculated on HPLC using chiral cellulose OD-H 
column, hexane/i-PrOH, 95:5, flow rate 1  mL/min (see 
Additional file 1).
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