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Abstract 

Background: Rhodanines and quinazolinones have been reported to possess various pharmacological activities.

Results: A novel series of twenty quinazolinone‑based rhodanines were synthesized via Knoevenagel condensa‑
tion between 4‑[3‑(substitutedphenyl)‑3,4‑dihydro‑4‑oxoquinazolin‑2‑yl)methoxy]substituted‑benzaldehydes and 
rhodanine. Elemental and spectral analysis were used to confirm structures of the newly synthesized compounds. The 
newly synthesized compounds were biologically evaluated for in vitro cytotoxic activity against the human fibrosar‑
coma cell line HT‑1080 as a preliminary screen using the MTT assay.

Conclusions: All the target compounds were active, displaying  IC50 values roughly in the range of 10–60 µM. Struc‑
ture–activity relationship study revealed that bulky, hydrophobic, and electron withdrawing substituents at the para‑
position of the quinazolinone 3‑phenyl ring as well as methoxy substitution on the central benzene ring, enhance 
cytotoxic activity. The four most cytotoxic compounds namely, 45, 43, 47, and 37 were further tested against two 
human leukemia cell lines namely, HL‑60 and K‑562 and showed cytotoxic activity in the low micromolar range with 
compound 45 being the most active, having  IC50 values of 1.2 and 1.5 μM, respectively. Interestingly, all four com‑
pounds were devoid of cytotoxicity against normal human fibroblasts strain AG01523, indicating that the synthesized 
rhodanines may be selectively toxic against cancer cells. Mechanistic studies revealed that the most cytotoxic target 
compounds exhibit pro‑apoptotic activity and trigger oxidative stress in cancer cells.
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Introduction
Cancer is still one of the leading causes of death world-
wide and the pursuit of novel clinically useful anticancer 
agents is therefore, one of the top priorities for medici-
nal chemists. Although gaining a reputation in recent 
years as “frequent hitters” in screening programs, rhoda-
nines as well as their bioisosteres, 2,4-thiazolidinediones 
and the hydantoins, remain attractive tools to medicinal 
chemists for structural manipulations directed at devel-
oping potent and selective ligands for a wide array of 
potential molecular targets. There has been a growing 
debate in the medicinal chemistry community in the last 

few years about the usefulness of rhodanines and related 
compounds as scaffolds or templates in drug discovery 
and drug development. In a recent comparative study 
on the rhodanines and related heterocycles, it was con-
cluded that such scaffolds can serve as attractive building 
blocks rather than being promiscuous binders or multi-
target chemotypes [1]. In the drug market, epalrestat is a 
rhodanineacetic acid derivative marketed in Japan since 
1992 for the treatment of diabetic peripheral neuropa-
thy. It acts by inhibiting aldose reductase which is the 
key enzyme in the polyol pathway of glucose metabolism 
under hyperglycemic conditions. Epalrestat was reported 
to be generally well tolerated on long-term use and it 
causes only few adverse effects such as nausea, vomiting 
and elevation of liver enzyme levels [2–7]. From a posi-
tive perspective, the good clinical safety profile of epal-
restat justified our interest in rhodanines as potential 
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therapeutic candidates. Literature survey revealed exten-
sive research work on the anticancer effects of rhoda-
nines over the last few decades [8–30]. On the molecular 
level, rhodanines were found to induce apoptosis through 
modulation of the pro-survival proteins of the Bcl-2 
family [8–12] or through modulation of other key sign-
aling proteins [13–16]. Interestingly, reactive oxygen spe-
cies (ROS) have been reported to be up-regulated after 
rhodanine treatment, a fact possibly associated with 
mitochondria-mediated apoptosis [14, 29, 30]. Rhoda-
nines were also reported to exert their anticancer effects 
through inhibition of phosphatase of regenerating liver 
(PRL-3) [16, 17]. On the other hand, numerous reports 
of quinazolinones as anticancer agents have appeared 
in literature [31–35]. Based on these findings, we were 
interested in investigating the anticancer effects of this 
novel scaffold of quinazolinone-based rhodanines, being 
isosteric to our previously reported 2,4-thiazolidinde-
diones. In the present investigation, a series of twenty 
quinazolinone-based rhodanines were synthesized and 
tested for in  vitro cytotoxic activity against the human 
fibrosarcoma cell line HT-1080 using the MTT assay. 
The four most active compounds namely, 45, 43, 47, and 
37 were selected for further testing against two human 
leukemia cell lines (HL-60 and K-562) and the normal 
human fibroblasts strain AG01523, and their mechanism 
of action was investigated.

Results and discussion
Chemistry
A straight forward synthetic pathway was adopted to 
synthesize the target compounds 31–50 as depicted 
in Scheme  1. The intermediate chloromethylquina-
zolinones (1–10) were prepared following reported pro-
cedures from anthranilic acid in two steps [36–39]. The 
N-chloroacetylation step was effected through reaction 
of anthranilic acid with chloroacetyl chloride in dry ben-
zene under reflux conditions. The cyclization step was 
achieved by condensing the N-chloroacetyl derivatives 
with the appropriate anilines in presence of phospho-
rous oxychloride in dry toluene. Reaction of chlorometh-
ylquinazolinones (1–10) with 4-hydroxybenzaldehyde 
or vanillin under the basic conditions of potassium car-
bonate in the presence of potassium iodide to catalyze 
the alkylation, afforded the aldehyde derivatives (11–30) 
in good yields as previously reported by us [40]. Finally, 
the desired title rhodanines (31–50) were obtained by 
treatment of the aldehydes with rhodanine under Kno-
evenagel condensation conditions using sodium acetate 
as a catalyst. The target compounds were structurally 
characterized by means of 1H NMR and 13C NMR spec-
trometric methods. Characteristically, the rhodanine NH 
proton appeared at 13.75–13.77 ppm as a broad singlet. 
The azomethine proton appeared within the aromatic 
region as a sharp singlet around 7.57 ppm. In 13C NMR 

Scheme 1 Reagents and conditions: a 4‑hydroxybenzaldehyde or vanillin,  K2CO3, KI, acetonitrile, reflux, 3 h. b Rhodanine, sodium acetate, glacial 
acetic acid, reflux, 24–48 h
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spectra, the thiocarbonyl carbon appeared in the range 
of 195–196  ppm. Compounds having trifluoromethyl 
groups namely, 37 and 47, showed two characteristic 
quartets due to C–F coupling. Other aliphatic and aro-
matic carbons appeared at their expected chemical shifts. 
The purity of the target compounds was satisfactorily 
confirmed by elemental analysis.

Biological study
The target compounds were initially screened for their 
in  vitro cytotoxic activities against the human fibro-
sarcoma cell line HT-1080 using the MTT assay. As 
shown in Table  1, all compounds were active, and their 
 IC50 values were roughly in the region between 10 and 
60 μM. Close inspection of biological data of the tested 
compounds led to several observations on their struc-
ture–activity relationships. The best cytotoxic activ-
ity was displayed by compounds bearing a bulky, 
hydrophobic, and electron-withdrawing substituent at 
the para-position of the quinazolinone 3-phenyl ring 
as evidenced by the relatively low  IC50 values of com-
pounds 45  (R1 = 4-Br,  R2 = OCH3;  IC50 = 8.7 µM), 43 
 (R1 = 4-Cl,  R2 = OCH3;  IC50 = 10.2 µM), 47  (R1 = 4-CF3, 
 R2  =  OCH3;  IC50  =  15.8  µM), and 37  (R1  =  4-CF3, 
 R2 = H;  IC50 = 15.8 µM). As a general pattern, meta-sub-
stituted compounds were found less active as compared 
to their para-substituted counterparts. Moreover, meth-
oxy substitution on the central benzene ring appears 
to enhance cytotoxicity as evidenced by the lower  IC50 
values of compounds 41–50 in comparison to their 
unsubstituted analogues 31–40. The four most cyto-
toxic compounds were selected for further testing, start-
ing with their cytotoxicity against two human leukemia 
cell lines (HL-60 and K-562) and the normal human skin 
fibroblast strain AG01523. As shown in Table 2, the leu-
kemia cells were more sensitive to all four compounds, 
compared to HT-1080 cells, and compound 45 was again 
the most active compound, with  IC50 values 1.2 and 
1.5  μM, for HL-60 and K-562 cells, respectively. Other 
compounds tested displayed three to fourfold lower 
activity against the two cell lines tested. Interestingly, 
normal human fibroblasts were not affected by all four 
compounds, indicating that the synthesized rhodanines 
may be selectively toxic against cancer cells. 

Regarding the mechanistic aspects of the above cyto-
toxic activity, flow cytometric analysis of DNA content 
did not reveal significant changes in the cell cycle phase 
distribution of rhodanine-treated HT-1080 cells com-
pared with control ones, with the exception of an S-phase 
arrest caused by compounds 43 and 45 at 48  h (not 
shown). All four compounds were found to induce apop-
tosis of HL-60 cells, based on caspase-3 cleavage (Fig. 1), 
in accordance with the numerous literature reports 

[8–16, 29, 30]. Furthermore, all four compounds were 
found to significantly induce intracellular ROS accumula-
tion in HT-1080 cells following a 48-h treatment (Fig. 2), 
in agreement with similar observations in other cancer 
cell lines using different rhodanine molecules [29, 30].

Experimental
Chemistry
General
Melting points are uncorrected and were measured 
on a Gallenkamp melting point apparatus. 1H and 13C 
NMR spectra were recorded on Bruker 400-MHz, JEOL 
RESONANCE 500-MHz, and Varian-Mercury 300-
MHz spectrometers. Chemical shifts were expressed 
in parts per million (ppm) downfield from tetramethyl-
silane (TMS) and coupling constants (J) were reported 

Table 1 Cytotoxicity of  test compounds against  HT-1080 
cells

IC50s (μM), mean of three independent experiments (± standard deviation)

N

N

O
R1

O

S

NH
O

S
R2

Code R1 R2 HT-1080

31 H H 42.9 (± 17.3)

32 4‑F H 47.3 (± 0.3)

33 4‑Cl H 35.3 (± 4.6)

34 3‑Cl H 57.1 (± 9.2)

35 4‑Br H 28.8 (± 2.4)

36 3‑Br H 43.4 (± 6.7)

37 4‑CF3 H 15.8 (± 2.1)

38 4‑CH3 H 35.7 (± 5.9)

39 3‑CH3 H 47.5 (± 12.1)

40 4‑OCH3 H 36.4 (± 0.9)

41 H OCH3 36.1 (± 2.9)

42 4‑F OCH3 35.8 (± 11.8)

43 4‑Cl OCH3 10.2 (± 4.7)

44 3‑Cl OCH3 28.4 (± 9.4)

45 4‑Br OCH3 8.7 (± 3.6)

46 3‑Br OCH3 23.7 (± 0.6)

47 4‑CF3 OCH3 15.8 (± 2.1)

48 4‑CH3 OCH3 31.5 (± 4.1)

49 3‑CH3 OCH3 30.7 (± 1.1)

50 4‑OCH3 OCH3 34.7 (± 2.7)

Doxorubicin – – 0.012 (± 0.005)



Page 4 of 10El‑Sayed et al. Chemistry Central Journal  (2017) 11:102 

in Hertz. Elemental analyses (C, H, N) were performed 
at the Microanalytical Unit, Cairo university, and 
the Regional Center for Mycology and Biotechnol-
ogy, Al-Azhar University, Cairo, Egypt. All compounds 
were routinely checked by thin-layer chromatography 
(TLC) on aluminum-backed silica gel plates. Flash col-
umn chromatography was performed using silica gel 
(100–200 mesh) with the indicated solvents. All sol-
vents used in this study were dried by standard meth-
ods. The starting 2-(chloromethyl)-3-(substitutedphenyl)
quinazolin-4(3H)-ones (1–10) [36–39] and 
4-[3-(substitutedphenyl)-3,4-dihydro-4-oxoquinazolin-
2-yl)methoxy]substitutedbenzaldehydes (11–30) [40] 
were synthesized following reported procedures.

Synthetic procedures
General procedure for  the synthesis of  5‑{4‑[(3‑substitut‑
edphenyl‑4‑oxo‑3,4‑dihydroquinazolin‑2‑yl)methoxy]
substitutedbenzylidene}‑2‑thioxothiazolidin‑4‑ones 31–
50 A mixture of the appropriate aldehyde (10  mmol), 
rhodanine (20 mmol), and sodium acetate (20 mmol) in 
glacial acetic acid (10  ml), was heated under reflux for 
48  h. After cooling to room temperature, the reaction 
mixture was poured into water and the precipitate was 
filtered, washed with water and dried. The crude product 
was subjected to silica gel column chromatography using 
methylene chloride/methanol (99:1) as an eluent followed 
by recrystallization from DMF/EtOH or DMF/H2O.

5‑{4‑[(3‑Phenyl‑4‑oxo‑3,4‑dihydroquinazolin‑2‑yl)meth‑
oxy]benzylidene}‑2‑thioxothiazolidin‑4‑one (31) Yield: 
54%, mp 230–232  °C (DMF/EtOH); 1H NMR (DMSO-
d6, ppm): δ 4.83 (s, 2H,  CH2), 6.99–7.03 (m, 2H, Ar–H), 
7.43–7.62 (m, 9H, Ar–H, azomethine-H), 7.70–7.72 (d, 
J = 800 Hz, 1H, Ar–H), 7.86–7.88 (m, 1H, Ar–H), 8.15–
8.17 (dd, J1 =  1.20  Hz, J2 =  8.00  Hz, 1H, Ar–H), 13.75 
(s, 1H, NH). 13C NMR (DMSO-d6, ppm): δ 67.75  (CH2), 
115.61 (2C), 121.06, 122.64, 126.05, 126.42, 127.37, 
127.57, 128.71 (2C), 129.19, 129.28 (2C), 131.59, 132.42 
(2C), 134.83, 135.88, 146.66, 151.07, 159.45, 161.16, 
169.41, 195.48 (C=S). Anal. calcd for  C25H17N3O3S2: C, 
63.68; H, 3.63; N, 8.91. Found: C, 63.55; H, 3.88; N, 8.60.

5‑{4‑[(3‑(4‑Fluorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(32) Yield: 46%, mp 231–233  °C, dec. (DMF/H2O); 1H 
NMR (DMSO-d6, ppm): δ 4.86 (s, 2H,  CH2), 7.02–7.04 (d, 
J = 8.80 Hz, 2H, Ar–H), 7.33–7.38 (m, 2H, Ar–H), 7.50–
7.52 (d, J = 8.80 Hz, 2H, Ar–H), 7.59 (s, 1H, azomethine-
H), 7.61–7.65 (m, 3H, Ar–H), 7.71–7.73 (d, J = 8.00 Hz, 

Table 2 Cytotoxicity of  selected compounds against  a 
panel of cell strains

IC50s (μM), mean of three independent experiments (± standard deviation)

N

N

O
R1

O

S

NH
O

S
R2

Code R1 R2 Cell line

HL-60 K-562 AG01523

37 4‑CF3 H 5.5 (± 0.2) 5.0 (± 3.2) > 100

43 4‑Cl OCH3 5.1 (± 2.0) 4.5 (± 4.3) > 100

45 4‑Br OCH3 1.2 (± 0.5) 1.5 (± 0.2) > 100

47 4‑CF3 OCH3 2.6 (± 0.4) 5.1 (± 0.3) > 100

Doxorubicin – – 0.011 (± 0.006) 0.212 (± 0.074) 0.875 
(± 0.248)

Fig. 1 Apoptosis of HL‑60 cells following rhodanine treatment. Cells 
incubated with the indicated compounds (50 μM) or the corre‑
sponding concentration of vehicle (control) for 48 h were lysed, and 
caspase‑3 cleavage was monitored by Western analysis of cell lysates 
(one representative experiment out of two similar ones is depicted)

Fig. 2 Oxidative stress of HT‑1080 cells following rhodanine treat‑
ment. Cells were incubated with the indicated compounds (10 μM) 
or the corresponding concentration of vehicle (control). Intracellular 
ROS were determined after 48 h using the DCFH‑DA method. Results 
represent the mean ± standard deviation of three independent 
experiments (**p < 0.01)
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1H, Ar–H), 7.87–7.91 (m, 1H, Ar–H), 8.16–8.18 (d, 
J =  7.60  Hz, 1H, Ar–H), 13.76 (s, 1H, NH). 13C NMR 
(DMSO-d6, ppm): δ 68.28  (CH2), 116.13 (2C), 116.55, 
116.78, 121.49, 123.17, 126.58, 126.92, 127.86, 128.12, 
131.49 (d, J = 9.0 Hz), 132.09, 132.52, 132.92 (2C), 135.39, 
147.10, 151.59, 159.91, 161.30, 161.78, 163.75, 169.92, 
195.97 (C = S). Anal. calcd for  C25H16FN3O3S2: C, 61.34; 
H, 3.29; N, 8.58. Found: C, 61.27; H, 3.63; N, 8.51.

5‑{4‑[(3‑(4‑Chlorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(33) Yield: 51%, mp 121–123  °C (DMF/H2O); 1H 
NMR (DMSO-d6, ppm): δ 4.88 (s, 2H,  CH2), 7.01–7.03 
(d, J =  8.00  Hz, 2H, Ar–H), 7.48–7.50 (d, J =  8.00  Hz, 
2H, Ar–H), 7.57–7.58 (m, 6H, Ar–H, azomethine-H), 
7.70–7.72 (d, J = 8.00 Hz, 1H, Ar–H), 7.86–7.90 (m, 1H, 
Ar–H), 8.15–8.17 (d, J =  7.60  Hz, 1H, Ar–H), 13.76 (s, 
1H, NH). 13C NMR (DMSO-d6, ppm): δ 68.28  (CH2), 
116.14 (2C), 121.46, 123.19, 126.61, 126.93, 127.88, 
128.16, 129.84 (2C), 131.22 (2C), 132.09, 132.91 (2C), 
134.35, 135.29, 135.43, 147.08, 151.35, 159.87, 161.66, 
169.92, 195.98 (C=S). Anal. calcd for  C25H16ClN3O3S2: C, 
59.34; H, 3.19; N, 8.30. Found: C, 58.90; H, 3.59; N, 8.29.

5‑{4‑[(3‑(3‑Chlorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(34) Yield: 55%, mp 237–239 °C (DMF/H2O); 1H NMR 
(DMSO-d6, ppm): δ 4.89 (s, 2H,  CH2), 7.01–7.03 (m, 2H, 
Ar–H), 7.49–7.64 (m, 7H, Ar–H, azomethine-H), 7.72–
7.75 (m, 2H, Ar–H), 7.88–7.92 (m, 1H, Ar–H), 8.16–8.18 
(dd, J1 = 1.20 Hz, J2 = 8.00 Hz, 1H, Ar–H), 13.76 (s, 1H, 
NH). 13C NMR (DMSO-d6, ppm): δ 67.87  (CH2), 115.60 
(2C), 121.00, 122.75, 126.14, 126.43, 127.41, 127.69 (2C), 
129.09, 129.28, 130.75, 131.54, 132.39 (2C), 133.34, 
134.94, 137.24, 146.57, 150.69, 159.34, 161.10, 169.47, 
195.49 (C=S). Anal. Calcd for  C25H16ClN3O3S2: C, 59.34; 
H, 3.19; N, 8.30. Found: C, 59.47; H, 3.44; N, 8.22.

5‑{4‑[(3‑(4‑Bromophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(35) Yield: 52%, mp 171–174  °C (DMF/H2O); 1H 
NMR (DMSO-d6, ppm): δ 4.88 (s, 2H,  CH2), 7.01–7.03 
(d, J =  8.40  Hz, 2H, Ar–H), 7.49–7.54 (m, 4H, Ar–H), 
7.58–7.62 (m, 2H, Ar–H, azomethine-H), 7.70–7.72 (d, 
J =  8.40  Hz, 3H, Ar–H), 7.86–7.90 (t, J =  7.60  Hz, 1H, 
Ar–H), 8.14–8.16 (d, J =  8.00  Hz, 1H, Ar–H), 13.75 (s, 
1H, NH). 13C NMR (DMSO-d6, ppm): δ 68.27  (CH2), 
116.17 (2C), 121.47, 122.97, 123.16, 126.61, 126.92, 
127.89, 128.13, 131.52 (2C), 132.11, 132.80 (2C), 132.91 
(2C), 135.41, 135.76, 147.09, 151.30, 159.89, 161.60, 
169.89, 195.96 (C=S). Anal. calcd for  C25H16BrN3O3S2: C, 
54.55; H, 2.93; N, 7.63. Found: C, 54.19; H, 3.20; N, 7.49.

5‑{4‑[(3‑(3‑Bromophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(36) Yield: 48%, mp 252–254  °C (DMF/H2O); 1H 
NMR (DMSO-d6, ppm): δ 4.88 (s, 2H,  CH2), 7.00–7.02 
(d, J =  8.80  Hz, 2H, Ar–H), 7.43–7.51 (m, 3H, Ar–H), 
7.57–7.64 (m, 4H, Ar–H, azomethine-H), 7.71–7.73 
(d, J =  8.00  Hz, 1H, Ar–H), 7.86–7.91 (m, 2H, Ar–H), 
8.15–8.17 (d, J = 8.00 Hz, 1H, Ar–H), 13.75 (s, 1H, NH). 
13C NMR (DMSO-d6, ppm): δ 68.41  (CH2), 116.10 (2C), 
121.51, 122.05, 123.37, 126.67, 126.93, 127.91, 128.20, 
128.53, 131.50, 131.95, 132.36, 132.64, 132.87 (2C), 
135.44, 137.85, 147.06, 151.19, 159.80, 161.62, 170.11, 
196.07 (C=S). Anal. Calcd for  C25H16BrN3O3S2: C, 54.55; 
H, 2.93; N, 7.63. Found: C, 54.72; H, 3.08; N, 7.53.

5‑{4‑[(3‑(4‑Trifluoromethylphenyl)‑4‑oxo‑3,4‑dihydro‑
quinazolin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazoli‑
din‑4‑one (37) Yield: 38%, mp 153–155 °C (DMF/H2O); 
1H NMR (DMSO-d6, ppm): δ 4.89 (s, 2H,  CH2), 6.96–6.99 
(d, J =  8.80  Hz, 2H, Ar–H), 7.47–7.49 (d, J =  8.80  Hz, 
2H, Ar–H), 7.57 (s, 1H, azomethine-H), 7.61–7.65 (m, 
1H, Ar–H), 7.72–7.81 (m, 3H, Ar–H), 7.90–7.93 (m, 2H, 
Ar–H), 8.04 (s, 1H, Ar–H), 8.17–8.18 (d, J = 7.20 Hz, 1H, 
Ar–H), 13.76 (s, 1H, NH). 13C NMR (DMSO-d6, ppm): δ 
68.56  (CH2), 115.92 (2C), 121.52, 122.79, 123.24, 125.50, 
126.47 (partially resolved q, J = 4.0 Hz), 126.65, 126.93, 
127. 93, 128.28, 130.31 (q, J =  32.0  Hz), 130.96, 132.03, 
132.84 (2C), 133.60, 135.50, 137.28, 147.06, 151.13, 
159.65, 161.76, 169.88, 195.96 (C=S). Anal. calcd for 
 C26H16F3N3O3S2: C, 57.88; H, 2.99; N, 7.79. Found: C, 
57.82; H, 3.22; N, 7.73.

5‑{4‑[(3‑(4‑Methylphenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(38) Yield: 51%, mp 148–150 °C (DMF/H2O); 1H NMR 
(DMSO-d6, ppm): δ 2.08 (s, 3H,  CH3), 4.84 (s, 2H,  CH2), 
6.99–7.02 (d, J  =  8.70  Hz, 2H, Ar–H), 7.29–7.32 (d, 
J = 7.80 Hz, 2H, Ar–H), 7.37–7.42 (m, 2H, Ar–H), 7.47–
7.50 (d, J = 8.70 Hz, 2H, Ar–H), 7.56–7.61 (m, 2H, Ar–H, 
azomethine-H), 7.67–7.70 (d, J =  8.10  Hz, 1H, Ar–H), 
7.83–7.88 (m, 1H, Ar–H), 8.14–8.16 (d, J = 8.10 Hz, 1H, 
Ar–H), 13.75 (s, 1H, NH). 13C NMR (DMSO-d6, ppm): 
δ 20.68  (CH3), 67.62  (CH2), 115.66 (2C), 120.48, 121.01, 
122.61, 126.01, 126.38, 127.31, 128.36 (2C), 129.78 (2C), 
131.57, 132.38 (2C), 133.20, 134.73, 138.68, 146.63, 
151.24, 159.52, 161.84, 169.36, 195.44 (C=S). Anal. Calcd 
for  C26H19N3O3S2: C, 64.31; H, 3.94; N, 8.65. Found: C, 
63.98; H, 3.71; N, 8.80.

5‑{4‑[(3‑(3‑Methylphenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(39) Yield: 54%, mp 165–168  °C (DMF/EtOH); 1H 
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NMR (DMSO-d6, ppm): δ 2.31 (s, 3H,  CH3), 4.83 (s, 2H, 
 CH2), 6.99–7.01 (d, J = 8.80 Hz, 2H, Ar–H), 7.23–7.25 (d, 
J = 7.60 Hz, 1H, Ar–H), 7.31–7.39 (m, 3H, Ar–H), 7.48–
7.50 (d, J = 8.80 Hz, 2H, Ar–H), 7.57 (s, 1H, azomethine-
H), 7.60–7.62 (d, J = 8.00 Hz, 1H, Ar–H), 7.70–7.72 (d, 
J = 8.00 Hz, 1H, Ar–H), 7.85–7.89 (m, 1H, Ar–H), 8.14–
8.16 (dd, J1 =  1.20  Hz, J2 =  8.00  Hz 1H, Ar–H), 13.75 
(s, 1H, NH). 13C NMR (DMSO-d6, ppm): δ 20.73  (CH3), 
67.79  (CH2), 115.60 (2C), 121.05, 122.73, 125.55, 126.06, 
126.40, 127.37, 127.58, 129.05, 129.21, 129.77, 131.54, 
132.39 (2C), 134.81, 135.73, 138.85, 146.64, 151.12, 
159.47, 161.14, 169.53, 195.54 (C=S). Anal. Calcd for 
 C26H19N3O3S2: C, 64.31; H, 3.94; N, 8.65. Found: C, 64.00; 
H, 3.87; N, 8.87.

5‑{4‑[(3‑(4‑Methoxyphenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]benzylidene}‑2‑thioxothiazolidin‑4‑one 
(40) Yield: 50%, mp 190–192 °C, dec. (DMF/EtOH); 1H 
NMR (DMSO-d6, ppm): δ 3.78 (s, 3H,  OCH3), 4.85 (s, 
2H,  CH2), 7.03–7.06 (dd, J1 = 3.20 Hz J2 = 8.80 Hz, 4H, 
Ar–H), 7.45–7.47 (d, J = 8.00 Hz, 2H, Ar–H), 7.50–7.52 
(d, J  =  8.80  Hz, 2H, Ar–H), 7.57–7.61 (m, 2H, Ar–H, 
azomethine-H), 7.68–7.70 (d, J =  8.00  Hz, 1H, Ar–H), 
7.85–7.89 (t, J  =  7.20  Hz, 1H, Ar–H), 8.15–8.17 (d, 
J =  7.20  Hz, 1H, Ar–H), 13.76 (s, 1H, NH). 13C NMR 
(DMSO-d6, ppm): δ 55.34  (OCH3), 67.66  (CH2), 114.46 
(2C), 115.68 (2C), 120.41, 121.03, 122.60, 126.01, 126.38, 
127.29, 127.42, 128.23, 129.78 (2C), 131.59, 132.39 (2C), 
134.70, 146.64, 151.54, 159.44, 161.34, 169.36, 195.44 
(C=S). Anal. calcd for  C26H19N3O4S2: C, 62.26; H, 3.82; 
N, 8.38. Found: C, 62.33; H, 3.92; N, 8.18.

5‑{4‑[(3‑Phenyl‑4‑oxo‑3,4‑dihydroquinazolin‑2‑yl)meth
oxy]‑3‑methoxybenzylidene}‑2‑thioxothiazolidin‑4‑one 
(41) Yield: 50%, mp 243–246 °C (DMF/H2O); 1H NMR 
(DMSO-d6, ppm): δ 3.83 (s, 3H,  OCH3), 4.79 (s, 2H, 
 CH2), 6.94–6.96 (d, J =  8.40  Hz, 1H, Ar–H), 7.03–7.06 
(dd, J1 = 1.60 Hz, J2 = 8.40 Hz, 1H, Ar–H), 7.16 (m, 1H, 
Ar–H), 7.36–7.62 (m, 7H, Ar–H, azomethine-H), 7.70–
7.72 (d, J = 8.00 Hz, 1H, Ar–H), 7.86–7.90 (t, J = 7.60 Hz, 
1H, Ar–H), 8.15–8.17 (d, J =  8.00  Hz, 1H, Ar–H). 13C 
NMR (DMSO-d6, ppm): δ 55.69  (OCH3), 68.35  (CH2), 
113.87, 113.94, 121.05, 122.86, 124.02, 126.41, 126.53, 
127.39, 127.59, 128.77, 129.15 (2C), 131.95 (3C), 134.84, 
135.79, 146.66, 149.19, 149.25, 151.12, 161.17, 169.36, 
195.44 (C=S). Anal. calcd for  C26H19N3O4S2: C, 62.26; H, 
3.82; N, 8.38. Found: C, 62.17; H, 3.80; N, 8.12.

5‑{4‑[(3‑(4‑Fluorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothia‑
zolidin‑4‑one (42) Yield: 49%, mp 163–166  °C (DMF/
EtOH); 1H NMR (DMSO-d6, ppm): δ 3.84 (s, 3H,  OCH3), 
4.83 (s, 2H,  CH2), 6.99–7.01 (d, J = 8.40 Hz, 1H, Ar–H), 

7.06–7.08 (d, J = 8.40 Hz, 1H, Ar–H), 7.17 (s, 1H, Ar–H), 
7.31–7.35 (m, 2H, Ar–H), 7.58–7.63 (m, 4H, Ar–H, 
azomethine-H), 7.71–7.73 (d, J  =  8.40  Hz, 1H, Ar–H), 
7.87–7.91 (m, 1H, Ar–H), 8.16–8.18 (d, J = 7.60 Hz, 1H, 
Ar–H), 13.77 (s, 1H, NH). 13C NMR (DMSO-d6, ppm): 
δ 56.16  (OCH3), 68.90  (CH2), 114.29, 114.40, 116.40, 
116.63, 121.49, 123.39, 124.50, 126.92, 127.06, 127.89, 
128.14, 131.53, 131.62, 132.44, 135.39, 147.09, 149.65 
(2C), 151.64, 161.30, 161.79, 163.75, 169.87, 195.94 
(C=S). Anal. calcd for  C26H18FN3O4S2: C, 60.11; H, 3.49; 
N, 8.09. Found: C, 59.91; H, 3.59; N, 7.80.

5‑{4‑[(3‑(4‑Chlorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothia‑
zolidin‑4‑one (43) Yield: 52%, mp 239–241  °C (DMF/
H2O); 1H NMR (DMSO-d6, ppm): δ 3.82 (s, 3H,  OCH3), 
4.84 (s, 2H,  CH2), 6.99–7.07(m, 2H, Ar–H), 7.16 (s, 1H, 
Ar–H), 7.55–7.63 (m, 6H, Ar–H, azomethine-H), 7.70–
7.72 (d, J = 8.00 Hz, 1H, Ar–H), 7.87–7.90 (t, J = 7.20 Hz, 
1H, Ar–H), 8.15–8.17 (d, J = 8.00 Hz, 1H, Ar–H), 13.76 
(s, 1H, NH). 13C NMR (DMF-d7, ppm): δ 56.19  (OCH3), 
69.56  (CH2), 114.59, 114.68, 122.05, 124.37, 124.63, 
127.17, 127.79, 128.30 (2C), 130.01 (2C), 131.76 (2C), 
132.30, 134.98, 135.47, 135.99, 147.71, 150.22, 150.40, 
151.97, 162.15, 170.63, 196.76 (C=S). Anal. calcd for 
 C26H18ClN3O4S2: C, 58.26; H, 3.38; N, 7.84. Found: C, 
58.52; H, 3.34; N, 7.99.

5‑{4‑[(3‑(3‑Chlorophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene]‑2‑thioxothia‑
zolidin‑4‑one (44) Yield: 52%, mp 147–150  °C (DMF/
EtOH); 1H NMR (DMF-d7, ppm): δ 3.94 (s, 3H,  OCH3), 
4.99 (s, 2H,  CH2), 7.09–7.10 (d, J = 8.50 Hz, 1H, Ar–H), 
7.14–7.16 (d, J = 8.00 Hz, 1H, Ar–H), 7.23 (s, 1H, Ar–H), 
7.50–7.56 (m, 2H, Ar–H), 7.57 (s, 1H, azomethine-H), 
7.61–7.67 (m, 2H, Ar–H), 7.71–7.73 (d, J  =  8.00, 1H, 
Ar–H), 7.82 (s, 1H, Ar–H), 7.89–7.92 (t, 1H, Ar–H), 
8.18–8.20 (d, J = 7.00 Hz, 1H, Ar–H). 13C NMR (DMF-
d7, ppm): δ 56.22  (OCH3), 69.60  (CH2), 114.43, 114.45, 
122.03, 124.19, 124.58, 127.15, 127.71, 128.30, 128.36, 
128.61, 129.96, 130.25, 131.27, 132.38, 134.42, 135.48, 
138.40, 147.62, 150.11, 150.30, 151.76, 162.09, 170.39, 
196.60 (C=S). Anal. calcd for  C26H18ClN3O4S2: C, 58.26; 
H, 3.38; N, 7.84. Found: C, 57.97; H, 3.47; N, 7.88.

5‑{4‑[(3‑(4‑Bromophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothiazo‑
lidin‑4‑one (45) Yield: 51%, mp 214–217 °C (DMF/H2O) 
1H NMR (DMSO-d6, ppm): δ 3.80 (s, 3H,  OCH3), 4.85 (s, 
2H,  CH2), 6.98–7.16 (m, 2H, Ar–H), 7.46–7.72 (complex 
m, 8H, Ar–H, azomethine-H), 7.85–7.91 (m, 1H, Ar–H), 
8.14–8.17 (dd, J1 = 1.20 Hz, J2 = 8.10 Hz, 1H, Ar–H). 13C 
NMR (DMSO-d6, ppm): δ 55.66  (OCH3), 68.43  (CH2), 
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113.84, 114.03, 120.40, 120.94, 122.38, 122.90, 123.96, 
126.40, 127.38, 127.64, 131.00 (2C), 131.94, 132.12 (2C), 
134.89, 135.14, 146.56, 149.10, 149.18, 150.86, 161.08, 
169.31, 195.41 (C=S). Anal. calcd for  C26H18BrN3O4S2: C, 
53.80; H, 3.13; N, 7.24. Found: C, 53.85; H, 2.79; N, 7.18.

5‑{4‑[(3‑(3‑Bromophenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothia‑
zolidin‑4‑one (46) Yield: 42%, mp 243–245  °C (DMF/
H2O); 1H NMR (DMSO-d6, ppm): δ 3.85 (s, 3H,  OCH3), 
4.83 (s, 2H,  CH2), 6.99–7.07 (m, 2H, Ar–H), 7.16 (d, 
J =  1.60  Hz, 1H, Ar–H), 7.41–7.45 (t, J =  8.00  Hz, 1H, 
Ar–H), 7.55–7.64 (m, 4H, Ar–H, azomethine H), 7.73–
7.75 (d, J = 8 Hz, 1H, Ar–H), 7.79 (s, 1H, Ar–H), 7.88–
7.92 (t, J = 7.60 Hz, 1H, Ar–H), 8.15–8.17 (d, J = 8.00 Hz, 
1H, Ar–H), 13.76 (s, 1H, NH). 13C NMR (DMSO-d6, 
ppm): δ 56.24  (OCH3), 69.01  (CH2), 114.15, 114.17, 
121.50, 121.94, 123.36, 124.49, 126.94, 127.06, 127.94, 
128.27, 128.55, 131.34, 132.41, 132.49, 132.59, 135.47, 
137.74, 147.03, 149.50, 149.58, 151.23, 161.63, 169.83, 
195.92 (C=S). Anal. calcd for  C26H18BrN3O4S2: C, 53.80; 
H, 3.13; N, 7.24. Found: C, 53.50; H, 2.96; N, 7.21.

5‑{4‑[(3‑(4‑(Trifluoromethylphenyl)‑4‑oxo‑3,4‑dihydro‑
quinazolin‑2yl)methoxy]‑3‑methoxybenzylidene}‑2‑thi‑
oxothiazolidin‑4‑one (47) Yield: 43%, mp 165–168  °C 
(DMF/EtOH); 1H NMR (DMSO-d6, ppm): δ 3.79 (s, 3H, 
 OCH3), 4.83 (s, 2H,  CH2), 6.98–7.05 (m, 2H, Ar–H), 
7.13 (s, 1H, Ar–H), 7.56 (s, 1H, azomethine-H), 7.61–
7.65 (t, J =  7.60, 1H, Ar–H), 7.69–7.79 (m, 3H, Ar–H), 
7.86–7.93 (m, 2H, Ar–H), 7.96 (s, 1H, Ar–H), 8.16–8.18 
(d, J = 8.00 Hz, 1H, Ar–H), 13.76 (s, 1H, NH). 13C NMR 
(DMSO-d6, ppm): δ 56.00  (OCH3), 69.09  (CH2), 114.02 
(2C), 121.52, 122.76, 123.40, 124.40, 125.47, 126.53 (par-
tially resolved q, J  =  4.0  Hz), 126.94, 127.09, 127.97, 
128.34, 129.84 (q, J =  32.0  Hz), 130.83, 132.44, 133.71, 
135.52, 137.13, 147.04, 149.32, 149.54, 151.19, 161.76, 
169.82, 195.92 (C=S). Anal. calcd for  C27H18F3N3O4S2: C, 
56.94; H, 3.19; N, 7.38. Found: C, 56.63; H, 3.31; N, 7.49.

5‑{4‑[(3‑(4‑Methylphenyl)‑4‑oxo‑3,4‑dihydroquina‑
zolin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thiox‑
othiazolidin‑4‑one (48) Yield: 46%, mp 172–175  °C 
(DMF/H2O); 1H NMR (DMSO-d6, ppm): δ 2.32 (s, 3H, 
 CH3), 3.83 (s, 3H,  OCH3), 4.81 (s, 2H,  CH2), 6.95–6.97 
(d, J  =  8.40, 1H, Ar–H), 7.04–7.06 (dd, J1  =  1.60  Hz, 
J2 = 8.40 Hz, 1H, Ar–H), 7.16–7.17 (d, J = 1.60 Hz, 1H, 
Ar–H), 7.28–7.30 (d, J = 8.40 Hz, 2H, Ar–H), 7.38–7.40 
(d, J  =  8.40  Hz, 2H, Ar–H), 7.57–7.61 (m, 2H, Ar–H, 
azomethine-H), 7.68–7.70 (d, J  =  8.00  Hz, 1H, Ar–H), 
7.84–7.89 (m, 1H, Ar–H), 8.14–8.16 (m, 1H, Ar–H), 
13.76 (s, 1H, NH). 13C NMR (DMSO-d6, ppm): δ 21.20 
 (CH3), 56.18  (OCH3), 68.73  (CH2), 114.40, 114.49, 121.53, 

123.32, 124.51, 126.91, 127.00, 127.86, 128.01, 128.92 
(2C), 130.20 (2C), 132.47, 133.65, 135.27, 139.17, 147.16, 
149.71, 149.82, 151.83, 161.72, 169.85, 195.93 (C=S). 
Anal. calcd for  C27H21N3O4S2: C, 62.90; H, 4.11; N, 8.15. 
Found: C, 62.96; H, 4.17; N, 7.98.

5‑{4‑[(3‑(3‑Methylphenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothia‑
zolidin‑4‑one (49) Yield: 47%, mp 154–156  °C (DMF/
H2O); 1H NMR (DMSO-d6, ppm): δ 2.27 (s, 3H,  CH3), 
3.84 (s, 3H,  OCH3), 4.79 (s, 2H,  CH2), 6.94–6.96(d, 
J = 8.40 Hz, 1H, Ar–H), 7.04–7.06 (d, J = 8.40 Hz, 1H, 
Ar–H), 7.17–7.37 (m, 5H, Ar–H), 7.57–7.62 (m, 2H, 
Ar–H, azomethine-H), 7.71–7.73 (d, J  =  8.00  Hz, 1H, 
Ar–H), 7.87–7.90 (t, J = 7.60 Hz, 1H, Ar–H), 8.15–8.17 
(d, J = 7.60 Hz, 1H, Ar–H), 13.76 (s, 1H, NH). 13C NMR 
(DMSO-d6, ppm): δ 21.18  (CH3), 56.18  (OCH3), 68.88 
 (CH2), 114.23 (2C), 121.54, 123.41, 124.51, 126.10, 
126.90, 126.99, 127.90, 128.13, 129.42, 129.76, 130.21, 
132.41, 135.32, 136.17, 139.21, 147.13, 149.59, 149.69, 
151.65, 161.65, 169.93, 195.97 (C=S). Anal. calcd for 
 C27H21N3O4S2: C, 62.90; H, 4.11; N, 8.15. Found: C, 62.56; 
H, 4.20; N, 7.85.

5‑{4‑[(3‑(4‑Methoxyphenyl)‑4‑oxo‑3,4‑dihydroquinazo‑
lin‑2‑yl)methoxy]‑3‑methoxybenzylidene}‑2‑thioxothia‑
zolidin‑4‑one (50) Yield: 48%, mp 148–150  °C (DMF/
H2O); 1H NMR (DMSO-d6, ppm): δ 3.80 (s, 3H,  OCH3), 
3.83 (s, 3H,  OCH3), 4.81 (s, 2H,  CH2), 6.95–7.07 (m, 4H, 
Ar–H), 7.16 (s, 1H, Ar–H), 7.40–7.42 (d, J =  8.70, 2H, 
Ar–H), 7.57–7.61 (m, 2H, Ar–H, azomethine-H), 7.67–
7.70 (m, 1H, Ar–H), 7.84–7.89 (m, 1H, Ar–H), 8.14–8.16 
(d, J = 8.10 Hz, 1H, Ar–H). 13C NMR (DMSO-d6, ppm): 
δ 55.85  (OCH3), 56.20  (OCH3), 68.77  (CH2), 114.39, 
114.47, 114.85 (2C), 121.54, 123.31, 124.54, 126.92, 
126.98, 127.84, 127.98, 128.68, 130.33 (2C), 132.49, 
135.25, 147.16, 149.70, 149.87, 152.12, 159.93, 161.88, 
169.86, 195.94 (C=S). Anal. calcd for  C27H21N3O5S2: C, 
61.00; H, 3.98; N, 7.90. Found: C, 61.10; H, 3.90; N, 8.07.

Biology
Cell culture and assessment of cytotoxicity
The compounds were tested for their cytotoxic activity 
on a solid tumor cell line, i.e. HT-1080 originating from a 
fibrosarcoma (American Type Culture Collection; ATCC, 
Rockville, MD, USA), and on two leukemia cell lines, i.e. 
the HL-60 human promyelocytic leukemia (European 
Collection of Animal Cell Cultures; ECACC, Salisbury, 
UK) and the K-562 human chronic myelogenous leuke-
mia (ATCC). Furthermore, the human skin fibroblast 
strain AG01523 (Coriell Institute for Medical Research, 
Camden, NJ, USA) was also used as normal control. 
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Adherent cells were routinely cultured in Dulbecco’s 
minimal essential medium (DMEM), and leukemia cells 
in RPMI 1640, in an environment of 5%  CO2, 85% humid-
ity, and 37  °C. All media were supplemented with peni-
cillin (100  U/ml), streptomycin (100  μg/ml) (media and 
antibiotics from Biochrom KG, Berlin, Germany), and 
10% fetal bovine serum (Life Technologies Europe BV, 
Thessaloniki, Greece). Adherent cells were subcultured 
using a trypsin (0.25%; Life Technologies Europe BV)—
citrate (0.30%; Sigma, St. Louis, MO, USA) solution. The 
cytotoxicity assay was performed by a modification of 
the MTT method [41, 42]. Briefly, the cells were plated 
in flat-bottomed 96-well microplates at a density of 5000 
cells/well, and incubated overnight before the addi-
tion of serial dilutions of the test compounds. The cells 
were incubated with the compounds or the correspond-
ing vehicle (DMSO) concentrations for 3 days. Then, the 
medium was replaced with MTT (Sigma) in serum-free, 
phenol-red-free DMEM (1 mg/ml). After incubation for 
4  h, the MTT formazan was solubilized in 2-propanol, 
and the optical density was measured using a FLUOstar 
Optima (BMG Labtech, Ortenberg, Germany) micro-
plate reader at a wavelength of 550 nm (reference wave-
length 660  nm). Doxorubicin hydrochloride (Sigma) 
was included in the experiments as positive control. The 
results represent the mean of three independent experi-
ments and are expressed as  IC50 [42].

Western analysis of protein expression
Apoptosis was estimated based on caspase-3 cleavage, 
as previously described [40]. Briefly, exponentially grow-
ing HL-60 cells were incubated with the test molecules at 
50 μM for 48 h. Cell lysates were collected in hot sample 
buffer (62.5 mM Tris, pH 6.8, 6% w/v SDS, 2% v/v glyc-
erol, 5% v/v 2-mercaptoethanol, 0.0125% w/v bromo-
phenol blue, and protease and phosphatase inhibitor 
cocktails), sonicated for 15  s, clarified by centrifugation 
and stored at –  800  °C until use. They were separated 
on 12.5% SDS-PAGE and the proteins were transferred 
to Polyscreen PVDF membranes (Perkin Elmer, Thes-
saloniki, Greece). After blocking with 5% (w/v) non-fat 
dried milk in 10 mM Tris–HCl, pH 7.4, 150 mM NaCl, 
and 0.05% Tween-20 (TTBS) buffer, membranes were 
incubated with the appropriate primary antibodies, i.e. 
rabbit polyclonal anti-caspase-3 (Cell Signaling Tech-
nology, Hertfordshire, UK) or mouse monoclonal anti-
actin (Neomarkers, Lab Vision Corporation, Fremont, 
CA, USA). Then, they were washed with TTBS, incu-
bated with either anti-mouse or anti-rabbit horseradish 
peroxidase-conjugated goat secondary antibody (Sigma), 
washed again with TTBS and the immunoreactive bands 
were visualized by chemiluminescence (LumiSensor HRP 
Substrate Kit, GenScript, Piscataway, NJ, USA) according 

to the manufacturer’s instructions on a Fujifilm LAS-
4000 luminescent image analyzer (Fujifilm Manufactur-
ing, Greenwood, SC, USA).

Intracellular reactive oxygen species determination
Intracellular ROS accumulation was studied using a 
modification of the DCFH-DA method [43]. In particu-
lar, HT-1080 cells were plated in black flat-bottomed 
96-well microplates at a density of 10,000 cells/well, and 
left to adhere overnight. Then, they were loaded with 
10  μM 2′,7′-dichlorofluorescein diacetate (DCFH-DA) 
for 1  h, followed by addition of the test molecules at 
10 μM. Fluorescence at 520 nm after excitation at 480 nm 
was measured at various time-points using a FLUOstar 
Optima microplate reader. The last measurement was 
taken at 48 h post stimulation. Then, the cells were fixed 
in 20% methanol, stained with 0.5% w/v crystal violet in 
20% methanol, and the wells were washed with deionized 
water. The stain was solubilized in 10% acetic acid, and 
the absorbance was measured in the above microplate 
reader at 550  nm. DCF fluorescence was normalized to 
the cell number, as assessed indirectly by the crystal vio-
let staining.

Conclusions
Among the rhodanines reported in the present study, 
compounds 45, 43, 47 and 37 were the most active, 
especially against leukemia cell lines, exhibiting in  vitro 
cytotoxic activity in the low micromolar range. Struc-
ture–activity relationship of the tested compounds 
revealed that bulky, hydrophobic, and electron-with-
drawing substituents at the para-position of the quina-
zolinone 3-phenyl ring enhance cytotoxicity. In addition, 
methoxy substitution on the central benzene ring was 
also found to have a positive impact on cytotoxicity. 
Selectivity against cancer cells as opposed to normal ones 
was also observed. Mechanistic studies revealed that the 
most cytotoxic target compounds exhibit pro-apoptotic 
activity and trigger oxidative stress in cancer cells. In our 
ongoing research project, further in depth mechanistic 
investigation as well as molecular modeling studies will 
be performed to obtain novel therapeutic candidates with 
improved pharmacological profile.
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