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Abstract 

Background: One of the most popular techniques for cancer detection is the nuclear medicine technique. The 
present research focuses on Platelet‑12‑lipoxygenase (P‑12‑LOX) as a promising target for treating and radio‑imaging 
tumor tissues. Curcumin was reported to inhibit this enzyme via binding to its active site.

Results: A novel curcumin derivative was successfully synthesized and characterized with yield of 74%. It was radiola‑
beled with the diagnostic radioisotope technetium‑99m with 84% radiochemical yield and in vitro stability up to 6 h. 
The biodistribution studies in tumor bearing mice confirmed the high affinity predicted by the docking results with a 
free binding energy value of (ΔG −50.10 kcal/mol) and affinity (13.64 pki) showing high accumulation in solid tumor 
with target/non‑target ratio >6.

Conclusion: The newly synthesized curcumin derivative, as a result of a computational study on platelet‑12 lipoxy‑
genase, showed its excellent free binding energy (∆G −50.10 kcal/mol) and high affinity (13.64 pKi). It could be an 
excellent radio‑imaging agent that targeting tumor cells via targeting of P‑12‑LOX.
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Background
Cancer is the main cause of mortality worldwide and 
the number of cancer patients is increasing at an alarm-
ing rate. Early detection of cancer greatly increases the 
chances of saving the patient’s life [1–3]. One of the most 
popular techniques for cancer detection is the nuclear 
medicine technique that is a breakthrough in the cancer 
imaging procedures [4, 5]. Technetium-99m is the most 
popular gamma emitting radionuclides used in nuclear 
medicine due to its perfect characteristics (6.02  h half-
life and 140  keV γ-ray energy) and to its low cost and 
good availability [3–7]. In order to develop a successful 
radioactive tracer for cancer targeting, a selective organic 

compound that can differentiate between tumor and nor-
mal cells is extensively needed [8]. Curcumin is a natural 
product isolated from the rhizomes of the Indian Cur-
cuma longa plant [9]. The Indian culture used curcumin 
as a food-flavoring agent, coloring agent and also in med-
icine as antiseptic, analgesic and antimalarial agent [10]. 
Researches proved that curcumin possesses other diverse 
of biological activities including antiviral [11], antibac-
terial [12], antifungal [13], anti-inflammatory [14], and 
antioxidant activities [15]. Recently, curcumin has drawn 
much attention due to its powerful anti-proliferative 
effect and anticancer activity in multiple cancers includ-
ing ovarian, pancreatic, breast, melanoma, neck, colon, 
prostate, and head cancers [16–20]. The anticancer effect 
is manifested through the induction of apoptosis, growth 
arrest, and inhibition of the tubulin polymerization [21–
23]. Furthermore, studies have shown that curcumin 
appeared as cytotoxic to cancer cells and cytoprotective 
to normal cells indicating that curcumin could be used 
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as a selective safe radiotracer [24]. Specific enzyme tar-
geting that is overexpressed in cancer, by using selective 
radiolabeled inhibitor of this enzyme, could be a great 
approach for treatment, imaging and diagnosis of can-
cers. The targeting process is a highly selective step that 
can be achieved by the computational approach [25]. 
The high over-expression of the Platelet-12 Lipoxyge-
nase (P-12-LOX) was reported in different cancer tis-
sues [26, 27]. Inhibition of such enzyme is considered to 
be a promising target for cancer treatment. To date few 
P-12-LOX inhibitors are known. Curcumin was reported 
to inhibit P-12-LOX via binding to its active site [28, 29]. 
The development of a novel curcumin derivative, which 
possesses higher free binding energy and good affinity to 
P-12-LOX, was one of the main objectives of this work. 
This is to select the highly predicted selective inhibitor of 
P-12-LOX to be synthesized then radiolabeled with tech-
netium-99m followed by its in vivo evaluation as a novel 
target agent to P-12-LOX receptor in cancer cells.

Experimental
Chemicals
Curcumin and 2,4,6-trimethylbenzoyl chloride were pur-
chased from Sigma-Aldrich, Steinheim, Germany. Ana-
lytical grade chemicals were directly used without further 
purification. All solutions were prepared using deionized 
water. Technetium-99m was eluted as 99mTcO4

− from 
99Mo/99m Tc generator, Elutec Brussels, Belgium.

Instruments
Mettler FP 80 melting point apparatus was used to deter-
mine the melting points that were uncorrected. Ultro-
spec-2100 Pro UV visible spectrophotometer was used to 
record ultraviolet (UV) spectrum. Infrared (IR) spectra 
were recorded on FT/IR Shimadzu, Fourier transform, 
Infrared spectrometer/cm scale using KBr disc technique. 
1H NMR and 13C NMR were carried out on Burker AC 
500  MHz Spectrometer; chemical shifts are expressed 
in δ (ppm) downfield from TMS as an internal stand-
ard. Accela U-HPLC system coupled to a TSQ Quantum 
Access MAX triple stage quadrupole mass spectrometer 
carried out the LC–MS analysis (Thermo Scientific Cor-
poration, USA) that was controlled with Xcalibur soft-
ware version 2.2. Radioactivity measurements were done 
using Sodium Iodide (Tl) γ-ray scintillation counter (Scaler 
Ratemeter SR7, Nuclear Enterprises, Edinburgh, Eng-
land). Ascending thin layer chromatography (TLC) run 
on pre-coated (0.25  mm) (GF 254) silica gel plates were 
used to follow up the reaction and the homogeneity of the 
compound. Routinely, used developing solvents system 
was C6H6:EtOAc:CHCl3 (5:1:5) (in ratio v/v). UV lamp at 
254 nm was used to visualize the spots. Silica gel (60-230 
mesh E. Merck) was used after heating at 110 °C for 1 h and 

was used for column chromatography separations. Silica 
gel 60 GF254 for TLC was used for coating 20 × 20 cm glass 
plates for preparative TLC.

Animals
The biological distribution was evaluated in 20–25  g 
Albino mice.

Software programs
Molecular Operating Environment (MOE) package 
license was purchased from Chemical Computing Group 
Inc, Sherbooke St, Montreal, QC, Canada [30].

Molecular docking
All compounds were built and saved as MOE. Rigid 
receptor was used as a docking approach. Receptor and 
solvent were kept as a “receptor’’. Triangle matcher was 
used as a placement method with timeout of 300 s. Two 
rescoring were computed; rescoring 1 was selected as 
London dG while rescoring 2 was selected as affinity. 
Force field was used as a refinement. The best confor-
mation for each compound was kept inside the docking 
pocket and the affinity (pKi) was computed. The free 
energy of binding ∆G (kcal/mol) for the proposed deriva-
tives were also recorded.

Synthesis of curcumin derivative (1,7‑bis[((4′‑(2″,4″,6″‑trim
ethylbenzoyl)oxy)‑3′‑methoxyphenyl]‑1,6‑heptandiene‑3,
5‑dione)
To an ice-cold curcumin solution (1) (3.68 g, 0.01 mol) in 
50  ml dry acetone, 2  g of sodium carbonate was added 
with stirring for 15 min. The 2,4,6-trimethylbenzoyl chlo-
ride (0.025 mol) was added dropwise to the mixture over 
a period of 30  min. The reaction was then refluxed for 
12 h [31]. The reaction mixture was filtered, evaporated 
then extracted using EtOAc (3 × 30 ml). The combined 
organic layers were dried using anhydrous MgSO4 and 
the solvent volume was reduced under reduced pres-
sure to give a yellow precipitate, which was recrystallized 
from ethanol to give compound (2) (Scheme 1) with yield 
74%, mp 210–212  °C, molecular formula C41H40O8 and 
M.Wt. 660.

Preparation of 99mTc‑curcumin derivative complex
Curcumin (150  μg) was dissolved in 1  ml DMSO in 
10  ml penicillin vials. Then about 10  mg of NaBH4 was 
added to each vial with pH adjustment in a range of 6–10 
using of 0.1 N sodium hydroxide or 0.1 N Hydrochloric 
Acid. Followed by the addition of 100 μl of freshly eluted 
99mTcO4

− (~200 MBq) to each vial. These reactions were 
performed for 15  min at room temperature. These pro-
cedures were repeated to evaluate the radiochemical 
yields with varying NaBH4 amounts (5–30  μg), varying 
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curcumin amounts (50–300  μg), on different time scale 
(5–60 min).

Radiochemical yield assay of 99mTc‑curcumin derivative 
complex
99mTc-curcumin derivative complex radiochemical yield 
and in  vitro stability were evaluated by using strips of 
ascending Whatman paper chromatography (PC). Two 
strips were used per experiment, on which two drops of 
the reaction product were placed on origin line at dis-
tance of 2 cm from the bottom.

For the determination of the ratio of free 99mTcO4
− 

radio-contaminant, acetone was used as a developing sol-
vent for one PC strip, where free 99mTcO4

− Rf was 1 while 
99mTc-curcumin derivative complex and reduced hydro-
lyzed technetium colloid species Rf was zero.

Another strip was developed in C2H5OH:H2O:NH4OH 
mixture (2:5:1, v/v/v) to determine the ratio of the 
hydrolyzed 99mTc radio-contaminant, where reduced 
hydrolyzed technetium colloid Rf is zero while free 
99mTcO4

− and 99mTc-curcumin derivative complex spe-
cies Rf is 1.

At the end of the developing process, the strips were 
dried, cut into 1 cm pieces and counted using the sodium 
iodide (Tl) γ-ray scintillation counter. Each experiment 
was repeated three times.

The radiochemical yield percent of 99mTc-curcumin 
derivative complex was calculated according to the fol-
lowing equation:

Biological distribution
The animal ethics committee guided this study was fol-
lowing the guidelines of the Egyptian Atomic Energy 
Authority. The biological distribution was evaluated in 
mice bearing solid tumor.

Solid tumor induction in mice
The solid tumor induction was done using Ehrlich ascites 
carcinoma (EAC) that was derived from a murine mam-
mary carcinoma [32, 33]. The parent tumor line EAC had 
been derived from 7 days old donor female Swiss Albino 
mice and diluted with sterile physiological saline solu-
tion. To induce a solid tumor, about 0.2 ml solution was 
I.M. injected in the female Albino mice right thigh for 
4–6 days [3, 5, 34].

Biodistribution assay of 99mTc‑curcumin derivative complex
The biodistribution study of 99mTc-curcumin deriva-
tive complex was evaluated at time intervals of 5, 15, 30, 
60, 120 and 180 min post injection (p. i) in solid tumor 
bearing Albino mice (n = 5 mice/time point). Mice were 
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separated in groups and supplied with food and water. 
99mTc-curcumin derivative complex was I.V. injected in 
the mice tail vein.

Firstly, animals were anaesthetized using chloroform, 
then weighted and sacrificed at different time intervals. 
All body organs and tissues were separated, collected 
and washed with saline then weighted. Blood, bone and 
muscle samples were collected and weighted then were 
assumed to be 7, 10 and 40% of the total body weight, 
respectively [3, 35]. The organs radioactivities as well as 
the background were measured in a well type γ-counter 
NaI(Tl). In a population of five, the percent injected 
dose/gram organ or tissue (%ID/g) were calculated. Tar-
get (solid tumor) to non-target (normal muscle) ratio 
(%T/NT) was calculated from %ID/g for solid tumor and 
normal muscle.

Statistical analysis
Graph Pad Prism version 6.0 software was used to do all 
the statistical analyses. Statistical analysis was conducted 
using one-way ANOVA followed by multiple Tukey–
Kranes post hoc test at ʋ < 0.05 considered for statistical 
significance.

Results and discussion
Computational selection of the best curcumin derivative
Selectivity plays a major role in drug targeting process. 
It can help in identifying the most suitable ligand (key) 
for a specific enzyme (lock). Computational approaches 
are widely used nowadays to compute the free energy 
of binding, affinity and other parameters like LogP that 
have an indication of good fitting and predictive high 
selectivity. P-12-LOX is overexpressed in many tumor 
tissues [36]. Arachidonic acid is metabolized by P-12-
LOX to produce a hydroxyeicosatetraenoic acid that 
has been reported to be a main cause of cancer devel-
opment [37, 38]. Thus, inhibition of P-12-LOX can 
decrease both cell proliferation and metastasis [39]. 
Curcumin was reported to inhibit P-12-LOX (66 µmol/l) 
[28, 29]. Also, a number of synthetic curcuminoids were 
reported to have a promising P-12-LOX inhibitory activ-
ity [40]. Compound E26C, a curcumin derivative with 
benzofuran moiety, had P-12-LOX inhibitory activity 
IC50 =  17  µmol/l and showed the best fitting distance 
3.3 Å among all the reported curcuminoids (Fig.  1). 
The discovery of a curcumin derivative that can possess 
high affinity toward P-12-LOX and can be radiolabeled 
for tumor imaging was the main objective of this study. 
Radiolabeling of a highly selective P-12-LOX inhibitor 
will also ensure high accuracy of tumor cells imaging, as 
this enzyme is overexpressed in tumor tissues as men-
tioned before.

The study aimed to propose different curcumin deriva-
tives that possess different substitution on the aromatic 
ring and that simulate the lead structure (Fig. 1).

A number of curcumin derivatives with a substituted 
phenyl ring at the same position of the lead derivative 
were designed (Fig. 2). The computational affinity (pKi), 
cLogP and free binding energy (ΔG) were computed 
and compared to those of both curcumin itself and the 
reported benzofuran derivative (Table 1).

It was clear that E26C had more inhibitory activ-
ity than curcumin, it showed higher affinity (pKi) 10.40 
and higher cLogP (7.9) as well. Besides, its free binding 
energy was very less and favorable (−51.65  kcal/mol) 
than that of curcumin (−30.85 kcal/mol).

As a result, from all the proposed structures, we were 
looking for the one with higher affinity, less free bind-
ing energy and higher cLogP than curcumin and com-
paring it with E26C as well. The 2,4,6-trimethyl phenyl 
derivative showed almost the same cLogP (7.7) to that 
of E26C and with high affinity (13.64) that was higher 
than both of E26C and curcumin. The 2,4,6-trimethyl 
phenyl derivative also showed less free binding energy 
(−50.10  kcal/mol) when compared to other proposed 
derivatives.

The new curcumin derivative showed better free bind-
ing energy that was reflected upon the total potential 
energy, which was lower toward the most stable state 
in case of the new derivative when compared to that of 
curcumin complex. In addition, it had a higher affinity 
(13.64). The binding of the new compound showed good 
coordination with the iron metal in the active site that 
was not achieved by the curcumin itself (Fig. 3).

In accordance, the curcumin derivative with 
(1,7-Bis[((4 ′-(2″ ,4 ,6″- tr imethylbenzoyl)oxy)-3 ′-
methoxyphenyl]-1,6-heptandiene-3,5-dione) was 
selected to be synthesized and radiolabeled with 
techniethium-99m.

The proposed chemical complex that may be formed 
between technetium 99m and the top ranked selected 
curcumin derivative compound with (1,7-Bis[((4′-
(2″,4″,6″-trimethylbenzoyl)oxy)-3′-methoxyphenyl]-
1,6-heptandiene-3,5-dione) was compared to 
curcumin-technetium-99m complex. It was proposed 
that two molecules of curcumin were complexed with 
one technetium-99m. While, (1,7-Bis[((4′-(2″,4″,6″-
tr imethylbenzoyl)oxy)-3 ′ -methoxyphenyl]-1 ,6-
heptandiene-3,5-dione) was complexed with by 1:1 ratio 
in which the technetium-99m formed a complex with the 
two carbonyl of the benzoyl moieties in addition to that 
at the 3,5-dione. In the first case the two curcumin mole-
cules formed a long and wide complex while the 2,4,6-tri-
methyl benzoyl derivative showed a conformation that 
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illustrated a well-fitting. When both complexes were 
docked, curcumin showed an affinity pki of (33.54) that 
was lower than that of the selected curcumin derivative 

that achieved an affinity pki of (45.20) to prove that it has 
more stability than that of curcumin in enzyme binding 
in the technetium-99m complex form (Fig. 4).

Fig. 1 Structure of E26C, a human P‑12‑LOX inhibitor. It is a curcumin derivative with benzofuran ring

Fig. 2 Proposed curcumin derivatives with substituted phenyl side chain
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Chemical synthesis of curcumin derivative
The chemical synthesis was achieved in one-step reac-
tion through reacting 2,4,6-trimethylbenzoyl chloride 
with curcumin according to the method mentioned 
previously.

IR (KBr) ʋ (cm−1): 3008 (CH-Ar), 2922, 2854 (CH-ali-
phatic), 1741 (C=O of ester), 1631 (C=O) 1600 (C=C 
aromatic), and 1122 (C–O). 1H NMR (CDCl3) δ ppm 
(500  MHz): 2.35–2.49 (s, 18H, 6  ×  CH3), 3.94 (s, 6H, 
2 ×  OCH3), 5.91 (s, 1H, H-4), 6.62 (d, 2H, H-2 & H-6, 
J =  15.5  Hz), 6.96 (s, 4H, H-3″ & H-5″), 7.21–7.29 (m, 
6H, Ar–H) and 7.68 (d, 2H, H-1 & H-7, J = 16 Hz). 13C 
NMR (DMSO-d6) δ ppm (125 MHz): 20.0 (4 × CH3), 21.2 
(2 × CH3), 55.8 (2 × OCH3), 101.9 (C-4), 111.6 (2 × C-2′), 
121.2 (2 × C-6′), 123.3 (2 × C-5′), 124.4 (2 × C-1′), 128.7 
(C-2, C-6, 2 × C-3″ & 2 × C-5″), 129.6 (2 × C-1″), 134.1 
(2 ×  C-4″), 136.0 (2 ×  C-2″ & 2 ×  C-6″), 140.0 (C-1 & 
C-7), 141.3 (2 × C-3′), 151.7 (2 × C-4′), 167.6 (2 × C=O 
of ester) and 183.1 (C-3 & C-5). MS: m/z (%) for C41H40O8: 
661 [M+ + 1] (26%).

Factors affecting on radiochemical yield of 99mTc‑curcumin 
derivative
Effect of reducing agent (NaBH4) amount
The effect of NaBH4 on the % radiochemical yield of 
99mTc-curcumin derivative complex was shown in (Fig. 5). 
At 5 mg NaBH4, the %99mTcO4

− was equal to 5.3 ± 0.8% 
that may be due to insufficient amount of NaBH4 to com-
plete the reduction of 99mTcO4

− to form 99mTc-complex. 
Increasing the amount of NaBH4 to 10 mg, the maximum 
radiochemical yield (84 ± 1.4%) was revealed. Increasing 
the NaBH4 greater than 10  mg the radiochemical yield 
was decreased to 75 ± 1.11% at 30 μg NaBH4.

Effect of pH
As shown in Fig.  6, the radiochemical yield of 99mTc-cur-
cumin derivative complex was affected by pH change. At pH 
6, the radiochemical yield was relatively low (72.1 ± 1.2%). 
While, the maximum radiochemical yield (84 ± 1.4%) was 
observed at pH 8, where the curcumin combined all the 
reduced technetium. When the pH increased above 8, the 
percent radiochemical yield was slightly decreased.

Effect of curcumin derivative amount
The correlation between the radiochemical yield and 
the amount of curcumin derivative is shown in Fig.  7. 
The maximum radiochemical yield of 99mTc-curcumin 
derivative complex (84 ±  1.4%) was obtained at 150  µg 
curcumin. At low curcumin amount (50  µg), the radio-
chemical yield was low (74.6 ± 1.3%), where the amount 
of curcumin was insufficient for forming complex with 
the reduced technetium. The radiochemical yield was 
increased by increasing the curcumin amount where a 
maximum radiochemical yield of 84 ± 1.4% was obtained 
at 150 µg curcumin.

Effect of reaction time
The formation of 99mTc-curcumin derivative complex was 
started relatively slowly as the radiochemical yield was 
70 ± 1.1% at 5 min reaction time as shown in Fig. 8. The 
maximum radiochemical yield of 99mTc-curcumin deriva-
tive complex was obtained at 30  min. Also, it remained 
constant up to 1 h.

In vitro stability study
The radiochemical yield of the 99mTc-curcumin derivative 
complex showed stability for up to 6 h that confirmed its 
suitability for use during this time period.

Biology study
The distribution of 99mTc-curcumin derivative complex 
was studied in solid tumor-bearing mice (%ID/g) at 5, 15, 
30, 60, 120 and 180  min post injection. The accumula-
tion of the %ID/g of 99mTc-curcumin derivative in differ-
ent body organs and fluids is illustrated in Fig. 9. It was 
clear that 99mTc-curcumin derivative didn’t accumulate in 
a specific body organ and was mainly excreted via both 
the urinary tract and hepatobiliary pathways. The kid-
neys showed 15.72 ± 3.1% ID/g at 15 min and intestine 
showed 8.49 ± 1.8% ID/g at 30 min.

The tumor tissue (mouse right leg muscle)/normal tis-
sue (mouse left leg muscle) ratio represents the key fac-
tor in the evaluation of the selectivity and sensitivity of 

Table 1 Computed affinity (pKi), cLogP, and ∆G (kcal/mol) 
for the proposed derivatives

Compound Affinity (pKi) cLogP ∆G kcal/mol

1 Phenyl 11.38 6.8 −30.54

2 4‑Methyl phenyl 11.51 7.49 −40.65

3 4‑Hydroxy phenyl 10.37 6.2 −43.40

4 4‑Methoxy phenyl 11.50 6.8 −43.45

5 2,4,6‑Trimethyl phenyl 13.64 7.7 −50.10

6 4‑Chloro phenyl 10.55 8.1 −41.75

7 4‑Bromo phenyl 10.72 8.4 −41.95

8 4‑Fluoro phenyl 10.24 7.1 −42.15

9 Curcumin 8.66 3.85 −30.85

10 Curcumin derivative (E26C) 10.40 7.9 −51.65
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99mTc-curcumin derivative complex to solid tumor. As 
shown from Fig.  10, the T/NT ratio of 99mTc-curcumin 
derivative complex in solid tumor-bearing mice was ~1.7 
at 15 min post injection and increases to its highest value 
of ~6.01 at 120 min post injection (p.i.) that clearly prove 
its high selectivity for the tumor cells.

This high preclinical T/NT ratio presents 99mTc-cur-
cumin derivative complex as a non-invasive probe for 
solid tumor imaging when compared with many other 
agents such as: 99mTc-meropenem (3.5 at 1  h p.i.) [7], 
99mTc-sunitinib (3 at 1 h p.i.) [3], 99mTc-PyDA (3 at 1 h 

p.i.) [5], Radioiodinated anastrozole (4.7 ±  0.06 at 2  h 
p.i.) [41], radioiodinated epirubicin (5.2 ± 0.09 at 1 h p.i.) 
[42], 99mTc-BnAO-NI (2.59, 2 h) [43], [99mTc(CO)3(IDA–
PEG3–CB)]− (3.45, 3  h) [44], 99mTc(CO)3-labeled 
chlorambucil analog (3.2 at 3  h p.i) [45], 99mTc-nitride-
pyrazolo [1,5-a] pyrimidine (2.2 at 1 h p.i.) [46], 99mTc-
DETA (2.47 at 4 h p.i.) [32], 99mTc-TETA (2.45 at 4 h p.i.) 
[32], 99mTc-TEPA (2.91 at 4 h p.i.) [32], 99mTc-citro-folate 
(4.3 at 4  h p.i.) [47] and 99mTc-gemcitabine (4.9 at 2  h 
p.i.) [48]. All of these present 99mTc-curcumin derivative 
complex as a promising solid tumor imaging agent.

Fig. 3 Predicted binding mode of A new curcumin derivative in complex with 12‑LOX active site. B Curcumin itself in the 12‑LOX active site
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Conclusion
A promising curcumin derivative with high affinity 13.64 
(pKi) and excellent free binding energy (−50.10  kcal/
mol) was selected for chemical synthesis and radiolabe-
ling to target P-12-LOX. It showed a high radiochemical 

yield of 84% and in  vitro stability up to 6  h. Its high  
accumulation in solid tumor with target/non-target 
ratio >6 indicated that it could be an excellent radio-
imaging agent that targets tumor cells via selectivity of 
P-12-LOX.

Fig. 4 A Curcumin‑Tc complex. B Selected derivative‑Tc complex
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