

Open Access

New lanostane-type triterpene acids from *wolfiporia extensa*

Gaimei She⁺, Nailiang Zhu⁺, Shuai Wang, Yang Liu, Yinying Ba, Changqing Sun and Renbing Shi^{*}

Abstract

Backgroud: Dried sclerotia of *Wolfiporia extensa* (Polyporaceae) is used to invigorate the spleen and to tranquilize the mind in Chinese herbal medicine. Lanostane-type triterpene acids were regard as major secondary metabolites from dried sclerotia of *W. extensa*.

Results: Three new lanostane-type triterpene acids, 3-*epi*-benzoyloxyl-dehydrotumulosic acid (1), 3-*epi*-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2) and 3-*epi*-(3'-hydroxy-3'-methylglutaryloxyl)-dehydrotumulosic acid (3), were isolated from the sclerotia of *W. extensa*, together with 3 known lanostane derivatives (4–6). Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D-NMR techniques.

Conclusion: Six lanostane derivatives including three new triterpene acids and three known compounds were reported from the sclerotia of *W. extensa* in this paper.

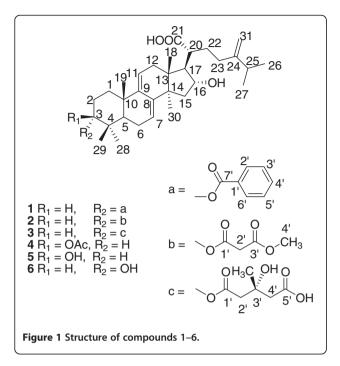
Background

Dried sclerotia of Wolfiporia extensa (Polyporaceae), well known as 'Fu-Ling' in China, is used to invigorate the spleen and to tranquilize the mind in Chinese herb medicine [1]. In combination with some other herbs, it shows activities as diuretic, sedative and analgesic [2]. Lanostane-type triterpenes were reported as major secondary metabolites, which are characterized with hydroxyl groups at C-16 position, and with a C-21 carboxylic acid group. A number of lanostane-type triterpene acids have been reported from dried sclerotia of W. extensa, in which some lanostane derivatives showed activities in the anti-tumor, anti-inflammatory and anti-oxidant activities [3-9]. As part of our continuing research on chemical constituents from Traditional Chinese Medicine (TCM) [10-12], three new lanostane-type triterpene acids, 3-epi-benzoyloxyl-dehydrotumulosic acid (1), 3-epi-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2) and 3-epi-(3'-hydroxy-3'-methylglutaryloxyl)dehydrotumulosic acid (3) were isolated from the dried sclerotia of W. extensa, together with three known lanostane derivatives (4-6) (Figure 1). Here we report the structure elucidation of the new compounds as follows.

Results and discussion

The dried sclerotia of *W. extensa* were extracted with 95% ethanol as described in Experimental part. The ethanolic extract was concentrated under reduced pressure to small volume and the solution was fractionated with a HPD-826 macroporous adsorptive resin column eluting with H₂O and 90% EtOH. The 90% EtOH fraction was concentrated and repeatedly fractionated on reverse-phase ODS, and on silica gel column to obtain six lanostane-type triterpene acids (1–6). Of them, 4–6 were identified as known compounds, dehydropachymic acid (4) [7], dehydrotumulosic acid (5) [13] and 3-*epi*-dehydrotumulosic acid (6) [13] (Figure 1) by spectroscopic methods and comparison with reported data. Compounds 1–3 were identified as new compounds based on a detailed analysis of NMR as described below (Tables 1 and 2).

Compound 1 was obtained as a colourless crystal in CH₃OH. The molecular formula was determined as $C_{38}H_{52}O_5$ from its positive HRESI-MS ([M + H]⁺, *m/z* 589.3864) and ¹³ C-NMR spectrum. The UV spectrum showed absorption at 234 nm, indicating the presence of a $\Delta^{7,9(11)}$ diene moiety, which was further supported by an absorption band at 1641 cm⁻¹ in the IR spectrum. Strong IR absorption at 3400 and 1710 cm⁻¹ indicated the carboxyl group in 1 [13]. The ¹H-NMR spectrum of 1 showed signals from two secondary methyls (δ 0.97 and 0.99, each 3 H, d, *J* = 6.8 *Hz*), five tertiary methyls (δ 0.92, 0.95, 1.04,



© 2012 She et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: shirb@126.com

[†]Equal contributors

School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Zhonghuan South Road, Wangjing District, Beijing 100102, People's Republic of China

1.06 and 1.48, each 3 H, s), two oxygen-bearing methylenes $[\delta 4.52 (1 \text{ H}, \text{t}, J = 6.8 \text{ Hz}) \text{ and } \delta 5.09 (1 \text{ H}, \text{ br s})]$, one terminal methylene group at δ 4.84 (1 H, s) and 4.97 (1 H, s), two olefinic methylenes at [δ 5.39 (1 H, d, J = 5.6 Hz) and δ 5.64 (1 H, br s)], together with signals from typical benzoyl group [δ 8.18 (2 H, d, J = 7.2 Hz), 7.35 (2 H, d, J = 7.6 Hz), 7.46(1 H, t, J = 7.4 Hz)] (Table 1). ¹³C-NMR and DEPT spectra of 1 showed signals from 38 carbons, including one carboxyl carbon [δ 178.6 (C-21)], two carbons from terminal methylene group [δ 107.0 (C-31) and 156.1 (C-24)], four olefinic carbons [δ 116.7 (C-11), 120.8 (C-7), 142.9 (C-8) and 146.0 (C-9)], two oxygenated methylenes [δ 79.0 (C-3) and 76.4 (C-16)], seven methyl carbons [δ 17.6 (C-18), 21.9 (C-27), 22.0 (C-26), 22.4 (C-29), 22.7 (C-19), 26.6 (C-30) and 28.1 (C-28)], signals from benzoyl group [δ 165.9 (C-7'), 133.2 (C-4'), 131.4 (C-1'), 129.8 (C-2', 6'), and 128.9 (C-3', 5')], and signals from other fifteen carbons (see Table 2). The aforementioned NMR features were similar to those of 3-epi-dehydrotumulosic acid (6), except for the existence of an additional set of signals arising from the benzoyl group in 1 [13].

The downfield shift at C-3 (δ 79.0) in **1**, from (δ 75.1) in **6**, suggested that the additional benzoyl group was linked to C-3 position of dehydrotumulosic acid moiety. It was further confirmed by the HMBC experiment which showed correlation between H-3 (δ 5.09) with the signal from C-7' (δ 165.9) of the benzoyl groups.

The relative configuration was established by ¹H-NMR and the NOESY experiment, in which the H-3 appeared as a broad singlet, the NOESY correlations of H-3 β at (δ 5.09, 1 H, br s) with Me-29 β at (δ 0.95, 3 H, s) revealed the

benzoyl linked the α position of C-3 in compound **1**. On the basis of the above evidence, the structure of **1** was elucidated as 3α -benzoyl- 16α -dihydroxyl-lanost-7, 9(11), 24(31)-trien-21-oic acid, named as 3-*epi*-benzoyloxyldehydrotumulosic acid.

Compound 2 was obtained as a colourless needle in CH₃OH. Careful comparison of ¹³C-NMR spectra of 1 and 2 indicate that both have a similar lanostane skeleton with different substitution group (details in Table 2). Unlike compound 1 with a benzoyl group, compound 2showed signals from a malonyl group [δ 41.9 (-CH₂-), 166.4 (-COO-) and 167.6 (-COO-)] and a methoxyl group [δ 52.2 (–OCH₃)]. HMBC experiment showed correlations between methoxyl proton (δ 3.63) with 3'-C (δ 166.4, from malonyl group) indicated the methyl malonate group [14]. The HMBC experiment of 2 revealed the correlation between H-3 (δ 4.86) and C-1' (δ 167.6), indicated the 3-substitution. Thus, compound 2 was established as 3-a-methyl-malonyl-16a-dihydroxy-lanost-7, 9(11), 24(31)-trien-21-oic acid, named as 3-epi-(3'-Omethyl malonyloxy)-dehydrotumulosic acid.

The ¹³C-NMR spectra of **3** showed signals from a lanostane skeleton similar to those of 1 and 2 (Table 2), except with different substitution groups. Except signals from lanostane skeleton in compound 3, ¹H-NMR showed signals at [δ 3.12 (1 H, d, J = 15.2 Hz, H-2'), 3.16 (1 H, d, *J* = 15.2 *Hz*, H-2'), 3.02 (1 H, d, *J* = 14.4 *Hz*, H-4'), 3.08 (1 H, d, J=14.4 Hz, H-4') and 1.71 (3 H, s, -CH₃)] along with 13 C-NMR showed signals [δ 171.4 (C-1'), 46.3 (C-2'), 69.9 (C-3'), 46.4 (C-4'), 174.6 (C-5'), and 28.4 (-CH₃)]. Those signals were assigned to 3-hydroxy-3-methylglutaryl group based on HMQC and HMBC spectra data. It was further confirmed from ESI-MS experiment, which showed fragment ions at m/z 525.4 [M-H-102 (CH (CH₃) (OH)-CH₂-COOH)]⁻. The HMBC correlations of H-3 (δ 4.94 br s) with C-1' (δ 171.4) confirmed that the 3-hydroxy-3methylglutaryloxyl group was at C-3 in 3 (Figure 1). The compound 3 is levorotatory. The *R*-configurations of C(3')in 3 was deduced by comparing of the compound 3 specific rotation features with those of (+)-3-epi-dehydrotumulosic acid, and (3' S)-(+)-3-hydroxy-3-methylglutaric acid, which are dextrorotatory [8,13]. These evidences indicated R-configuration of C (3') in compound 3. As stated above, the structure of 3 was indicated as 3-α-(3'-hydroxy-3'methylglutaryloxy)-16 α -dihydroxy-lanost-7, 9(11), 24 (31)-trien-21-oic acid, named as 3-epi-(3'-hydroxy-3'methylglutaryloxyl)-dehydrotumulosic acid.

Experimental

General experimental procedures

Optical rotations were measured on a P-1020 Polarimeter (JASCO, Tokyo, Japan). UV spectra were obtained on a UV 210A Shimadzu spectrometer. IR spectra were recorded on an FT-IR spectrometer (Nicolet iS10, Thermo Scientifi,

Table 1 ¹ H-NMR data of 1–3 (at 500 or 600 M	MHz, in
C₅D₅N; δ in ppm, J in Hz)	

position	1	2	3
1	1.73, m 1.82, td (9.6, 3.2)	1.65, m 1.75, dd (13.8, 3.0)	1.69, m 1.88, m
2	1.91, m 1.97, m	1.79, dt (6.6, 3.0) 1.85, d (12.0)	1.78, ddd (15.6, 6.4 2.8)1.86, m
3	5.09, br s	4.86, br s	4.94, br s
5	1.88, dd (10.0, 4.0)	1.68, t (5.1)	1.76, dd (9.2, 6.4)
6	2.08, m 2.09, m	2.00, m 2.01, m	2.02, m 2.03, m
7	5.64, br s	5.57, br s	5.57, br s
11	5.39, d (5.6)	5.38, d (6.0)	5.39, d (6.0)
12	2.42, dd (15.6, 5.2) 2.66, d (16.8)	2.42, dd (18.0, 6.6) 2.66, d (18.0)	2.42, dd (17.2, 6.8) 2.66, d (16.4)
15	1.95, d (12.4) 2.47, dd (12.8, 9.2)	1.91, d (13.2) 2.45, t (3.9)	1.91, m 2.45, dd (12.4, 8.8)
16	4.52, t (6.8)	4.51, t (7.2)	4.52, t (6.8)
17	2.86, dd (11.2, 5.6)	2.85, dd (11.4, 6.0)	2.84, dd (11.2, 5.6)
18	1.06, s	1.05, s	1.04, s
19	1.04, s	0.99, s	1.00, s
20	2.95, td (10.8, 2.4)	2.94, dd (10.8, 3.0)	2.92, td (10.8, 2.0)
22	2.46, m 2.68, m	2.51, m 2.63, m	2.42, m 2.61, m
23	2.37, m 2.55, br d (11.6)	2.38, m 2.54, m	2.38, m 2.54, m
25	2.29, m	2.29, m	2.27, m
26	0.97, d (6.8)	0.97, d (6.6)	0.97, d (6.8)
27	0.99, d (6.8)	0.98, d (6.6)	0.99, d (6.8)
28	0.92, s	0.87, s	0.90, s
29	0.95, s	0.90, s	0.96, s
30	1.48, s	1.42, s	1.41, s
31	4.84, br s 4.97, br s	4.83, br s 4.97, br s	4.83, br s 4.96, br s
2'	8.18, d (7.2)	3.60, s	3.12, d (15.2) 3.16, d (15.2)
3'	7.35, t (7.6)	_	_
4 '	7.46, t (7.4)	3.63, s	3.02, d (14.4) 3.08, d (14.4)
5 '	7.35, t (7.6)	-	_
6 '	8.18, d (7.2)	-	_
-CH ₃	_	_	1.71, s

USA) with KBr pellets. ¹H- and ¹³C-NMR spectrum was recorded in pyridine- d_5 with Bruker AM-400, DRX-500 and VARIAN INOVA-600 spectrometers operating at 400, 500 and 600 MHz for ¹H-NMR experiments, and 125 and 150 MHz for ¹³C-NMR experiment, respectively. Coupling constants are expressed in Hertz (*Hz*) and chemical shifts are given on a δ (ppm) scale with tetramethylsilane as internal standard. Negative ion ESI-MS and HRESI-MS

were recorded on an AutoSpec 3000 spectrometer (VG, Manchester, UK). Column chromatography separations were performed using HPD-826 (Cangzhou Bon Adsorber Technology Co., Cangzhou, China), Chromatorex ODS

Table 2 ¹³ C-NMR Data of 1–3 (at 125 or 150 MHz, in
C₅D₅N; δ in ppm)

Position	1	2	3
1	31.2	30.8	31.1
2	23.5	23.2	23.4
3	79.0	79.6	78.2
4	37.7	36.8	36.7
5	45.3	44.7	44.8
6	23.2		23.1
7	120.8	23.1	
8	142.9	120.8	120.7
o 9		142.7	142.8
9 10	146.0	146.0	146.0
	37.2	37.6	37.6
11	116.7	116.6	116.5
12	36.2	36.2	36.2
13	45.1	45.1	45.1
14	49.5	49.5	49.5
15	44.4	44.4	44.4
16	76.4	76.4	76.4
17	57.6	57.6	57.6
18	17.6	17.6	17.6
19	22.7	22.6	22.7
20	48.5	48.5	48.5
21	178.6	178.7	178.6
22	31.4	31.4	31.4
23	33.2	33.2	33.2
24	156.1	156.0	156.1
25	34.1	34.1	34.1
26	22.0	22.0	22.0
27	21.9	21.8	21.8
28	28.1	27.9	28.1
29	22.4	22.3	22.5
30	26.6	26.6	26.6
31	107.0	107.0	107.2
1'	131.4	167.6	171.4
2'	129.8	41.9	46.3
3'	128.9	166.4	69.9
4 '	133.2	52.2	46.4
5'	128.9	-	174.6
6 '	129.8	_	-
7'	165.9	_	-
3'-Me	_	-	28.4

(Fuji Silysia Chemical Co., Greenville, USA) and Silica gel (Qingdao Haiyang Chemical Co., Qingdao, China) as adsorbants. TLC was carried on silica gel G precoated plates (Qingdao Haiyang Chemical Co., Qingdao, China). The TLC plate was monitored by spraying with 10% H₂SO₄ solution in ethanol followed by heating.

Fungal material

The dried sclerotia of *W. extensa* were collected from Hebei Guang Ming Prepared Medicinal Herbs Co., Ltd, China and identified by Prof. Yu-Ting Cheng (Beijing University of Chinese Medicines). An authentic sample was kept in School of Chinese Pharmacy, Beijing University of Chinese Medicines.

Extraction and isolation

The dried sclerotia of W. extensa (17.5 kg) were powdered and extracted with exhaustively 95% EtOH under reflux. The EtOH extract was concentrated to the small volume (3 L), and applied on a HPD-826 macroporous adsorptive resin (15 Kg, 18 $cm \times 150$ cm), eluting with H₂O (60 L) and 90% EtOH (80 L). The 90% EtOH fraction was concentrated under reduced pressure, and the residue (60 g) was subjected to column chromatography (CC) on silica gel eluted with CHCl₃/CH₃OH (4:1 to 1:1, 5 L) to obtain eight fractions (Fr 1-Fr 8). Fr 1, was further fractionated on silica gel eluted with cyclohexane/ CHCl₃ (8:1 and 4:1, each 1 L), and ODS eluted with a step gradient of $H_2O/MeOH$ (1:0 \rightarrow 0:1), and PTLC (Cyclohexane/CHCl₃/HOAc, 3:1:0.1) to give 1 (20 mg), 2 (10 mg) and 4 (10 mg). Fraction 2 was fractionated repeatedly on Silica gel (CHCl₃/EtOAc, 8:1) and ODS (CH₃OH/H₂O, 75:25 \rightarrow 85:15), eluted with CHCl₃/ CH₃OH (50:1), to obtain 5 (20 mg) and 6 (10 mg) from Fr 2. Fr 3 was subjected to CC on silica gel (CHCl₃/ EtOAc, 4:1), and preparative TLC on silica gel (CHCl₃/ EtOAc/HOAc, 1:1:0.1) to obtain 3 (20 mg).

3-epi-benzoyloxyl-dehydrotumulosic acid (1)

Colourless needles; ¹H-NMR (in pyridine- d_5): see Table 1. ¹³C-NMR (in pyridine- d_5): see Table 2. IR (KBr) cm⁻¹: 3400, 2928, 1710, 1641, 1279, 1175, 895, 800. UV λ MeOH max nm (log): 234 (4.32). HRESI-MS (*m*/*z*): 589.3864 [M + H]⁺, calcd for C₃₈H₅₃O₅, 589.3893. ESI-MS (*m*/*z*) (rel. int.): 587.3 [M - 1]⁻ (100), 417.0 (23), 338.9 (4), 208.8 (13).

3-epi-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2)

Colourless needles; ¹H-NMR (in pyridine- d_5): see Table 1. ¹³C-NMR (in pyridine- d_5): see Table 2. IR (KBr) cm⁻¹: 3416, 2960, 1736, 1707, 1641, 1254, 1152, 891, 800. UV λ MeOH max nm (log): 243 (4.16). HRESI-MS (m/z): 607.3605 [M + Na]⁺, calcd for C₃₅H₅₂O₇Na, 607.3611.

3-epi-(3' -hydroxy-3'-methylglutaryloxyl)-dehydrotumulosic acid (3)

Colourless needles; $[\alpha] = -7.6 (c = 0.1705, \text{ pyridine}); {}^{1}\text{H-NMR}$ (in pyridine- d_5): see Table 1. 13 C-NMR (in pyridine- d_5): see Table 2. IR (KBr) cm⁻¹: 3389, 2962, 1707, 1642, 1205, 1176, 891, 802, 780, 770. UV λ MeOH max nm (log): 244 (4.13); HRESI-MS (m/z): 651.3880 [M + Na]⁺, calcd for C₃₇H₅₆O₈Na, 651.3873. ESI-MS (m/z) (rel. int.): 627.5 [M - 1]⁻ (100), 525.4 (5).

Competing interests

The authors declare that they have no competing interests.

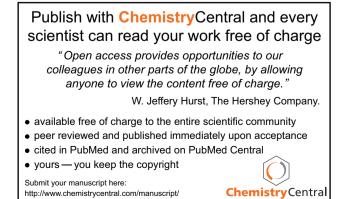
Authors' contributions

GS carried out the chemical analysis-structure elucidation and drafted the Manuscript; NZ carried out the chemical studies; SW employed in the several chemical assays of extraction and isolation; YL worked at the part of experimental design; YB engaged in the part of chemical analysis-structure elucidation; CS carried out the part of chemical assays of extraction and isolation; SR conceived of the study and its design and coordination of the scientific teams. All authors have read and approved the final manuscript.

Acknowledgements

This work was supported by Important National Science & Technology Specific Projects during the 11th Five-Year Plan Period (NO. 2009ZX09502-006), Innovative research team of Beijing University of Chinese Medicine (NO. 2011-CXTD-12), the Twelfth Five-Year National Science & Technology Support Program (NO. 2012BAI29B06), National Natural Science Foundation of China (NO. 81102776) and the Beijing Nova program (NO. 2011070).

Received: 13 January 2012 Accepted: 6 May 2012 Published: 6 May 2012


References

- The Pharmacopoeia Commission of P.R.C: *Pharmacopoeia of People's Republic of China*. Beijing: Chemical Industry Press; 2010:224. ISBN 1.
- Giner-Larza EM, Mánez S, Giner-Pons RM, Carmen RM, Ríos JL: On the anti-inflammatory and anti-phospholipase A2 activity of extracts from lanostane-rich species. *J Ethnopharmacology* 2000, 73:61–69.
- Ukiya M, Akihisa T: Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic cctivity of poricoic acids A and G from *Poria cocos. J Nat Prod* 2002, 65:462–465.
- 4. Akihisa T, Nakamura Y, Tokuda H, Uchiyama E, Suzuki T, Kimura Y, Uchikura K, Nishino H: **Triterpene acids from** *Poria cocos*
- and their anti-tumor-promoting effects. J Nat Prod 2007, 70:948–953.
 Akihisa T, Uchiyama E, Kikuchi T, Tokuda H, Suzuki T, Kimura Y:
- Anti-tumor-promoting effects of 25-methoxyporicoic acid A and other triterpene acids from *Paria acocs. J Nat Prod* 2009, **72**:1786–1792.
- Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K: Isolation of inhibitors of TPA-induced mouse ear edema from hoelen. *Poria cocos. Chem Pharm Bull* 1996, 44:847.
- Yasukawa K, Kaminaga T, Kitanaka S, Tai T, Nunoura Y, Natori S, Takido M: 3β-p-Hydroxybenzoyldehydrotumulosic acid from *Poria cocos*, and its anti-inflammatory effect. *Phytochemistry* 1998, 48:1357–1360.
- Kamo T, Asanoma M, Shibata H, Hirota M: Anti-inflammatory lanostanetype triterpene acids from *Piptoporus betulinus*. J Nat Prod 2003, 66:1104–1106.
- Zhou L, Zhang YC, Gapter LA, Ling H, Agarwal R, Ng K: Cytotoxic and antioxidant activities of lanostane-type triterpenes isolated from *Poria cocos*. *Chem Pharm Bull* 2008, 56:1459–1462.
- She GM, Wang D, Zeng SF, Yang CR, Zhang YJ: New Phenylethanoid glycosides and sugar esters from Ku-Ding-Cha, a herbal tea produced from Ligustrum purpurascens. J Food Sci 2008, 73:C476–C481.
- She GM, Xu C, Liu B, Shi RB: Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH Radical Scavenging Activity. J Food Sci 2010, 75:C359–C362.
- 12. She GM, Xu C, Liu B, Shi RB: **Two new monoterpenes from** *Mentha haplocalyx* **Briq**. *Helv Chim Acta* 2010, **93**:2495–2498.

- 13. Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A: Triterpenes from the surface layer of *Poria cocos. Phytochemistry* 1995, **39**:1165–1169.
- Kemami WHV, Berg A, Hertel W, Nkengfack AE, Heartweck C: Antiinflammatory and anti-hyaluronate lyase activities of lanostanoids from *Piptoporus betulinus. J Antibiot* 2004, 57:755–758.

doi:10.1186/1752-153X-6-39

Cite this article as: She *et al.*: New lanostane-type triterpene acids from *wolfiporia extensa*. *Chemistry Central Journal* 2012 **6**:39.

