New lanostane-type triterpene acids from wolfiporia extensa

Gaimei She ${ }^{\dagger}$, Nailiang Zhu ${ }^{\dagger}$, Shuai Wang, Yang Liu, Yinying Ba, Changqing Sun and Renbing Shi*

Abstract

Backgroud: Dried sclerotia of Wolfiporia extensa (Polyporaceae) is used to invigorate the spleen and to tranquilize the mind in Chinese herbal medicine. Lanostane-type triterpene acids were regard as major secondary metabolites from dried sclerotia of W. extensa.

Results: Three new lanostane-type triterpene acids, 3-epi-benzoyloxyl-dehydrotumulosic acid (1), 3-epi-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2) and 3-epi-(3'-hydroxy-3'-methylglutaryloxyl)-dehydrotumulosic acid (3), were isolated from the sclerotia of W. extensa, together with 3 known lanostane derivatives (4-6). Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D-NMR techniques. Conclusion: Six lanostane derivatives including three new triterpene acids and three known compounds were reported from the sclerotia of W. extensa in this paper.

Background

Dried sclerotia of Wolfiporia extensa (Polyporaceae), well known as 'Fu-Ling' in China, is used to invigorate the spleen and to tranquilize the mind in Chinese herb medicine [1]. In combination with some other herbs, it shows activities as diuretic, sedative and analgesic [2]. Lanostane-type triterpenes were reported as major secondary metabolites, which are characterized with hydroxyl groups at C-16 position, and with a C-21 carboxylic acid group. A number of lanos-tane-type triterpene acids have been reported from dried sclerotia of W. extensa, in which some lanostane derivatives showed activities in the anti-tumor, anti-inflammatory and anti-oxidant activities [3-9]. As part of our continuing research on chemical constituents from Traditional Chinese Medicine (TCM) [10-12], three new lanostane-type triterpene acids, 3-epi-benzoyloxyl-dehydrotumulosic acid (1), 3-epi-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2) and 3-epi-(3'-hydroxy-3'-methylglutaryloxyl)dehydrotumulosic acid (3) were isolated from the dried sclerotia of W. extensa, together with three known lanostane derivatives (4-6) (Figure 1). Here we report the structure elucidation of the new compounds as follows.

[^0]
Results and discussion

The dried sclerotia of W. extensa were extracted with 95\% ethanol as described in Experimental part. The ethanolic extract was concentrated under reduced pressure to small volume and the solution was fractionated with a HPD-826 macroporous adsorptive resin column eluting with $\mathrm{H}_{2} \mathrm{O}$ and $90 \% \mathrm{EtOH}$. The $90 \% \mathrm{EtOH}$ fraction was concentrated and repeatedly fractionated on reverse-phase ODS, and on silica gel column to obtain six lanostane-type triterpene acids (1-6). Of them, 4-6 were identified as known compounds, dehydropachymic acid (4) [7], dehydrotumulosic acid (5) [13] and 3-epi-dehydrotumulosic acid (6) [13] (Figure 1) by spectroscopic methods and comparison with reported data. Compounds 1-3 were identified as new compounds based on a detailed analysis of NMR as described below (Tables 1 and 2).

Compound 1 was obtained as a colourless crystal in $\mathrm{CH}_{3} \mathrm{OH}$. The molecular formula was determined as $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{O}_{5}$ from its positive HRESI-MS ($[\mathrm{M}+\mathrm{H}]^{+}, m / z$ 589.3864) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. The UV spectrum showed absorption at 234 nm , indicating the presence of a $\Delta^{7,9(11)}$ diene moiety, which was further supported by an absorption band at $1641 \mathrm{~cm}^{-1}$ in the IR spectrum. Strong IR absorption at 3400 and $1710 \mathrm{~cm}^{-1}$ indicated the carboxyl group in $\mathbf{1}$ [13]. The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1}$ showed signals from two secondary methyls ($\delta 0.97$ and 0.99 , each $3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$), five tertiary methyls ($\delta 0.92,0.95,1.04$,

Figure 1 Structure of compounds 1-6.
1.06 and 1.48, each $3 \mathrm{H}, \mathrm{s}$), two oxygen-bearing methylenes [$\delta 4.52(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$ and $\delta 5.09(1 \mathrm{H}, \mathrm{br} \mathrm{s})$], one terminal methylene group at $\delta 4.84(1 \mathrm{H}, \mathrm{s})$ and $4.97(1 \mathrm{H}, \mathrm{s})$, two olefinic methylenes at $[\delta 5.39(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz})$ and δ $5.64(1 \mathrm{H}, \mathrm{br}$ s)], together with signals from typical benzoyl group $[\delta 8.18(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $7.46(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$] (Table 1). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT spectra of 1 showed signals from 38 carbons, including one carboxyl carbon [$\delta 178.6$ (C-21)], two carbons from terminal methylene group [$\delta 107.0(\mathrm{C}-31)$ and 156.1 (C24)], four olefinic carbons [$\delta 116.7$ (C-11), 120.8 (C-7), 142.9 (C-8) and 146.0 (C-9)], two oxygenated methylenes [$\delta 79.0$ (C-3) and 76.4 (C-16)], seven methyl carbons [δ 17.6 (C-18), 21.9 (C-27), 22.0 (C-26), 22.4 (C-29), 22.7 (C19), 26.6 (C-30) and 28.1 (C-28)], signals from benzoyl group [$\delta 165.9$ (C-7'), 133.2 (C-4'), 131.4 (C-1'), 129.8 (C$\left.2^{\prime}, 6^{\prime}\right)$, and $128.9\left(\mathrm{C}-3^{\prime}, 5^{\prime}\right)$], and signals from other fifteen carbons (see Table 2). The aforementioned NMR features were similar to those of 3-epi-dehydrotumulosic acid (6), except for the existence of an additional set of signals arising from the benzoyl group in $\mathbf{1}$ [13].

The downfield shift at C-3 ($\delta 79.0$) in 1, from ($\delta 75.1$) in 6, suggested that the additional benzoyl group was linked to C-3 position of dehydrotumulosic acid moiety. It was further confirmed by the HMBC experiment which showed correlation between $\mathrm{H}-3$ ($\delta 5.09$) with the signal from C-7' (δ 165.9) of the benzoyl groups.
The relative configuration was established by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and the NOESY experiment, in which the $\mathrm{H}-3$ appeared as a broad singlet, the NOESY correlations of $\mathrm{H}-3 \beta$ at ($\delta 5.09$, $1 \mathrm{H}, \mathrm{br}$ s) with $\mathrm{Me}-29 \beta$ at ($\delta 0.95,3 \mathrm{H}, \mathrm{s}$) revealed the
benzoyl linked the α position of C-3 in compound 1 . On the basis of the above evidence, the structure of $\mathbf{1}$ was elucidated as 3α-benzoyl-16 α-dihydroxyl-lanost-7, $9(11$), 24(31)-trien-21-oic acid, named as 3-epi-benzoyloxyldehydrotumulosic acid.

Compound 2 was obtained as a colourless needle in $\mathrm{CH}_{3} \mathrm{OH}$. Careful comparison of ${ }^{13} \mathrm{C}$-NMR spectra of 1 and 2 indicate that both have a similar lanostane skeleton with different substitution group (details in Table 2). Unlike compound 1 with a benzoyl group, compound 2 showed signals from a malonyl group [$\delta 41.9\left(-\mathrm{CH}_{2}-\right)$, 166.4 (-COO-) and 167.6 (-COO-)] and a methoxyl group [$\delta 52.2\left(-\mathrm{OCH}_{3}\right)$]. HMBC experiment showed correlations between methoxyl proton ($\delta 3.63$) with $3^{\prime}-\mathrm{C}(\delta$ 166.4, from malonyl group) indicated the methyl malonate group [14]. The HMBC experiment of 2 revealed the correlation between H-3 (δ 4.86) and C-1' (δ 167.6), indicated the 3 -substitution. Thus, compound 2 was established as $3-\alpha$-methyl-malonyl-16 α-dihydroxy-lanost7, 9(11), 24(31)-trien-21-oic acid, named as 3-epi-(3'-Omethyl malonyloxy)-dehydrotumulosic acid.
The ${ }^{13}$ C-NMR spectra of 3 showed signals from a lanostane skeleton similar to those of 1 and 2 (Table 2), except with different substitution groups. Except signals from lanostane skeleton in compound $3,{ }^{1} \mathrm{H}-\mathrm{NMR}$ showed signals at $\left[\delta 3.12\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.16(1 \mathrm{H}, \mathrm{d}\right.$, $\left.J=15.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.02\left(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.08(1 \mathrm{H}$, d, $\left.J=14.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$ and $1.71\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$] along with ${ }^{13} \mathrm{C}-\mathrm{NMR}$ showed signals [$\delta 171.4\left(\mathrm{C}-1{ }^{\prime}\right), 46.3\left(\mathrm{C}-2^{\prime}\right), 69.9$ (C-3'), 46.4 (C-4'), 174.6 (C-5'), and $28.4\left(-\mathrm{CH}_{3}\right)$]. Those signals were assigned to 3-hydroxy-3-methylglutaryl group based on HMQC and HMBC spectra data. It was further confirmed from ESI-MS experiment, which showed fragment ions at $m / z 525.4\left[\mathrm{M}-\mathrm{H}-102\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)(\mathrm{OH})-\mathrm{CH}_{2}-\right.\right.$ $\mathrm{COOH})]^{-}$. The HMBC correlations of H-3 ($\delta 4.94 \mathrm{br}$ s) with $\mathrm{C}-1$ ' (δ 171.4) confirmed that the 3-hydroxy-3methylglutaryloxyl group was at C-3 in 3 (Figure 1). The compound $\mathbf{3}$ is levorotatory. The R-configurations of $\mathrm{C}\left(3^{\prime}\right)$ in $\mathbf{3}$ was deduced by comparing of the compound 3 specific rotation features with those of (+)-3-epi-dehydrotumulosic acid, and ($3^{\prime} S$)-(+)-3-hydroxy-3-methylglutaric acid, which are dextrorotatory $[8,13]$. These evidences indicated R-configuration of $C\left(3^{\prime}\right)$ in compound 3 . As stated above, the structure of 3 was indicated as $3-\alpha-\left(3^{\prime}\right.$-hydroxy- 3^{\prime} -methylglutaryloxy)-16 α-dihydroxy-lanost-7, 9(11), 24 (31)-trien-21-oic acid, named as 3-epi-(3'-hydroxy-3'-methylglutaryloxyl)-dehydrotumulosic acid.

Experimental

General experimental procedures

Optical rotations were measured on a P-1020 Polarimeter (JASCO, Tokyo, Japan). UV spectra were obtained on a UV 210A Shimadzu spectrometer. IR spectra were recorded on an FT-IR spectrometer (Nicolet iS10, Thermo Scientifi,

Table $1^{1} \mathrm{H}$-NMR data of $\mathbf{1 - 3}$ (at 500 or $\mathbf{6 0 0} \mathbf{~ M H z}$, in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} ; \delta$ in ppm, Jin Hz)

position	1	2	3
1	$\begin{gathered} 1.73, m 1.82, \mathrm{td} \\ (9.6,3.2) \end{gathered}$	$\begin{aligned} & 1.65, \text { m 1.75, } \\ & \text { dd (13.8, 3.0) } \end{aligned}$	1.69, m 1.88, m
2	1.91, m 1.97, m	$\begin{aligned} & 1.79, \text { dt (6.6, 3.0) } \\ & \text { 1.85, d (12.0) } \end{aligned}$	$\begin{gathered} 1.78, \operatorname{ddd}(15.6,6.4 \\ 2.8) 1.86, \mathrm{~m} \end{gathered}$
3	5.09, br s	4.86, br s	4.94, br s
5	$\begin{gathered} 1.88, \mathrm{dd} \\ (10.0,4.0) \end{gathered}$	1.68, t (5.1)	1.76, dd (9.2, 6.4)
6	2.08, m 2.09, m	2.00, m 2.01, m	2.02, m 2.03, m
7	5.64 , br s	5.57, br s	5.57, br s
11	5.39, d (5.6)	$5.38, \mathrm{~d}$ (6.0)	5.39, d (6.0)
12	$\begin{gathered} 2.42, \mathrm{dd} \\ (15.6,5.2) \\ 2.66, \mathrm{~d}(16.8) \end{gathered}$	$\begin{gathered} \text { 2.42, dd (18.0, 6.6) } \\ 2.66, d(18.0) \end{gathered}$	$\begin{gathered} \text { 2.42, dd (17.2, 6.8) } \\ 2.66, d(16.4) \end{gathered}$
15	$\begin{gathered} 1.95, \mathrm{~d}(12.4) \\ 2.47, \mathrm{dd}(12.8,9.2) \end{gathered}$	$\begin{aligned} & \text { 1.91, d (13.2) } \\ & 2.45, \mathrm{t}(3.9) \end{aligned}$	$\begin{aligned} & \text { 1.91, m 2.45, } \\ & \text { dd (12.4, 8.8) } \end{aligned}$
16	$4.52, \mathrm{t}$ (6.8)	4.51, t (7.2)	4.52, t (6.8)
17	2.86 , dd (11.2, 5.6)	2.85, dd (11.4, 6.0)	2.84, dd (11.2, 5.6)
18	1.06, s	1.05, s	1.04, s
19	1.04, s	0.99, s	1.00, s
20	2.95, td (10.8, 2.4)	2.94, dd (10.8, 3.0)	2.92, td (10.8, 2.0)
22	2.46, m 2.68, m	2.51, m 2.63, m	2.42, m 2.61, m
23	$\begin{gathered} 2.37, \text { m 2.55, } \\ \text { br d (11.6) } \end{gathered}$	2.38, m 2.54, m	2.38, m 2.54, m
25	2.29, m	2.29, m	2.27, m
26	0.97, d (6.8)	0.97, d (6.6)	0.97, d (6.8)
27	0.99, d (6.8)	0.98, d (6.6)	0.99, d (6.8)
28	0.92, s	0.87, s	0.90, s
29	0.95, s	0.90, s	0.96, s
30	1.48, s	1.42, s	1.41, s
31	$\begin{gathered} \text { 4.84, br s } 4.97, \\ \text { br s } \end{gathered}$	4.83, br s 4.97, br s	4.83 , br s 4.96, br s
2^{\prime}	8.18, d (7.2)	3.60 , s	$\begin{aligned} & 3.12, d(15.2) \\ & 3.16, d(15.2) \end{aligned}$
3'	7.35, t (7.6)	-	-
4^{\prime}	7.46, t (7.4)	$3.63,5$	$\begin{aligned} & 3.02, \mathrm{~d}(14.4) \\ & 3.08, \mathrm{~d}(14.4) \end{aligned}$
5^{\prime}	7.35, t (7.6)	-	-
$6{ }^{\prime}$	8.18, d (7.2)	-	-
$-\mathrm{CH}_{3}$	-	-	1.71, s

USA) with KBr pellets. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum was recorded in pyridine- d_{5} with Bruker AM-400, DRX-500 and VARIAN INOVA-600 spectrometers operating at 400, 500 and 600 MHz for ${ }^{1} \mathrm{H}$-NMR experiments, and 125 and 150 MHz for ${ }^{13} \mathrm{C}$-NMR experiment, respectively. Coupling constants are expressed in Hertz $(H z)$ and chemical shifts are given on a δ (ppm) scale with tetramethylsilane as internal standard. Negative ion ESI-MS and HRESI-MS
were recorded on an AutoSpec 3000 spectrometer (VG, Manchester, UK). Column chromatography separations were performed using HPD-826 (Cangzhou Bon Adsorber Technology Co., Cangzhou, China), Chromatorex ODS

Table $2{ }^{13} \mathrm{C}$-NMR Data of $\mathbf{1 - 3}$ (at 125 or 150 MHz , in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} ; \delta$ in ppm)

Position	1	2	3
1	31.2	30.8	31.1
2	23.5	23.2	23.4
3	79.0	79.6	78.2
4	37.7	36.8	36.7
5	45.3	44.7	44.8
6	23.2	23.1	23.1
7	120.8	120.8	120.7
8	142.9	142.7	142.8
9	146.0	146.0	146.0
10	37.2	37.6	37.6
11	116.7	116.6	116.5
12	36.2	36.2	36.2
13	45.1	45.1	45.1
14	49.5	49.5	49.5
15	44.4	44.4	44.4
16	76.4	76.4	76.4
17	57.6	57.6	57.6
18	17.6	17.6	17.6
19	22.7	22.6	22.7
20	48.5	48.5	48.5
21	178.6	178.7	178.6
22	31.4	31.4	31.4
23	33.2	33.2	33.2
24	156.1	156.0	156.1
25	34.1	34.1	34.1
26	22.0	22.0	22.0
27	21.9	21.8	21.8
28	28.1	27.9	28.1
29	22.4	22.3	22.5
30	26.6	26.6	26.6
31	107.0	107.0	107.2
1^{\prime}	131.4	167.6	171.4
2^{\prime}	129.8	41.9	46.3
3^{\prime}	128.9	166.4	69.9
4^{\prime}	133.2	52.2	46.4
5^{\prime}	128.9	-	174.6
$6{ }^{\prime}$	129.8	-	-
$7{ }^{\prime}$	165.9	-	-
3'-Me	-	-	28.4

(Fuji Silysia Chemical Co., Greenville, USA) and Silica gel (Qingdao Haiyang Chemical Co., Qingdao, China) as adsorbants. TLC was carried on silica gel G precoated plates (Qingdao Haiyang Chemical Co., Qingdao, China). The TLC plate was monitored by spraying with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution in ethanol followed by heating.

Fungal material

The dried sclerotia of W. extensa were collected from Hebei Guang Ming Prepared Medicinal Herbs Co., Ltd, China and identified by Prof. Yu-Ting Cheng (Beijing University of Chinese Medicines). An authentic sample was kept in School of Chinese Pharmacy, Beijing University of Chinese Medicines.

Extraction and isolation

The dried sclerotia of W. extensa (17.5 kg) were powdered and extracted with exhaustively $95 \% \mathrm{EtOH}$ under reflux. The EtOH extract was concentrated to the small volume (3 L), and applied on a HPD-826 macroporous adsorptive resin ($15 \mathrm{Kg}, 18 \mathrm{~cm} \times 150 \mathrm{~cm}$), eluting with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~L})$ and $90 \% \mathrm{EtOH}(80 \mathrm{~L})$. The $90 \% \mathrm{EtOH}$ fraction was concentrated under reduced pressure, and the residue (60 g) was subjected to column chromatography (CC) on silica gel eluted with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}(4: 1$ to $1: 1$, 5 L) to obtain eight fractions ($\mathrm{Fr} 1-\mathrm{Fr} 8$). Fr 1, was further fractionated on silica gel eluted with cyclohexane/ CHCl_{3} (8:1 and $4: 1$, each 1 L), and ODS eluted with a step gradient of $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 0 \rightarrow 0: 1)$, and PTLC (Cyclohexane/ $\mathrm{CHCl}_{3} / \mathrm{HOAc}, 3: 1: 0.1$) to give $\mathbf{1}(20 \mathrm{mg}), 2$ $(10 \mathrm{mg})$ and $4(10 \mathrm{mg})$. Fraction 2 was fractionated repeatedly on Silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 8: 1\right)$ and ODS $\left(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}, \quad 75: 25 \rightarrow 85: 15\right)$, eluted with $\mathrm{CHCl}_{3} /$ $\mathrm{CH}_{3} \mathrm{OH}(50: 1)$, to obtain $5(20 \mathrm{mg})$ and $6(10 \mathrm{mg})$ from Fr 2. Fr 3 was subjected to CC on silica gel $\left(\mathrm{CHCl}_{3} /\right.$ EtOAc, 4:1), and preparative TLC on silica gel $\left(\mathrm{CHCl}_{3} /\right.$ EtOAc/HOAc, 1:1:0.1) to obtain 3 (20 mg).

3-epi-benzoyloxyl-dehydrotumulosic acid (1)

Colourless needles; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (in pyridine- d_{5}): see Table 1.
${ }^{13} \mathrm{C}$-NMR (in pyridine- d_{5}): see Table 2. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}$: 3400, 2928, 1710, 1641, 1279, 1175, 895, 800. UV $\lambda \mathrm{MeOH} \max \mathrm{nm}(\log): 234$ (4.32). HRESI-MS (m / z): 589.3864 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{O}_{5}, 589.3893$. ESIMS (m / z) (rel. int.): 587.3 [$\mathrm{M}-1]^{-}$(100), 417.0 (23), 338.9 (4), 208.8 (13).

3-epi-(3'-O-methyl malonyloxy)-dehydrotumulosic acid (2)

 Colourless needles; ${ }^{1} \mathrm{H}$-NMR (in pyridine- d_{5}): see Table $1 .{ }^{13} \mathrm{C}$-NMR (in pyridine- d_{5}): see Table 2. IR (KBr) cm^{-1} : 3416, 2960, 1736, 1707, 1641, 1254, 1152, 891, 800. UV $\lambda \mathrm{MeOH} \max \mathrm{nm}$ (log): 243 (4.16). HRESI-MS $(m / z): 607.3605[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Na}$, 607.3611.3-epi-(3' -hydroxy-3'-methylglutaryloxyl)-dehydrotumulosic acid (3)
Colourless needles; $[\alpha]=-7.6\left(c=0.1705\right.$, pyridine); ${ }^{1} \mathrm{H}-$ NMR (in pyridine- d_{5}): see Table $1 .{ }^{13} \mathrm{C}$-NMR (in pyri-dine- d_{5}): see Table 2. IR (KBr) $\mathrm{cm}^{-1}: 3389,2962,1707$, 1642, 1205, 1176, 891, 802, 780, 770. UV $\lambda \mathrm{MeOH} \max$ nm (log): 244 (4.13); HRESI-MS (m / z): $651.3880[\mathrm{M} \mathrm{+}$ $\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}$, 651.3873. ESI-MS (m / z) (rel. int.): $627.5\left[\mathrm{M} \mathrm{-} \mathrm{1]}{ }^{-}\right.$(100), 525.4 (5).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

GS carried out the chemical analysis-structure elucidation and drafted the Manuscript; NZ carried out the chemical studies; SW employed in the several chemical assays of extraction and isolation; YL worked at the part of experimental design; YB engaged in the part of chemical analysis-structure elucidation; CS carried out the part of chemical assays of extraction and isolation; SR conceived of the study and its design and coordination of the scientific teams. All authors have read and approved the final manuscript.

Acknowledgements

This work was supported by Important National Science \& Technology Specific Projects during the 11th Five-Year Plan Period (NO. 2009ZX09502006), Innovative research team of Beijing University of Chinese Medicine (NO. 2011-CXTD-12), the Twelfth Five-Year National Science \& Technology Support Program (NO. 2012BAI29B06), National Natural Science Foundation of China (NO. 81102776) and the Beijing Nova program (NO. 2011070),

Received: 13 January 2012 Accepted: 6 May 2012
Published: 6 May 2012

References

1. The Pharmacopoeia Commission of P.R.C: Pharmacopoeia of People's Republic of China. Beijing: Chemical Industry Press; 2010:224. ISBN 1.
2. Giner-Larza EM, Mánez S, Giner-Pons RM, Carmen RM, Ríos JL: On the anti-inflammatory and anti-phospholipase A2 activity of extracts from lanostane-rich species. J Ethnopharmacology 2000, 73:61-69.
3. Ukiya M, Akihisa T: Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic cctivity of poricoic acids A and G from Poria cocos. J Nat Prod 2002, 65:462-465.
4. Akihisa T, Nakamura Y, Tokuda H, Uchiyama E, Suzuki T, Kimura Y, Uchikura K, Nishino H: Triterpene acids from Poria cocos and their anti-tumor-promoting effects. J Nat Prod 2007, 70:948-953.
5. Akihisa T, Uchiyama E, Kikuchi T, Tokuda H, Suzuki T, Kimura Y: Anti-tumor-promoting effects of 25 -methoxyporicoic acid A and other triterpene acids from Poria cocos. J Nat Prod 2009, 72:1786-1792.
6. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K: Isolation of inhibitors of TPA-induced mouse ear edema from hoelen. Poria cocos. Chem Pharm Bull 1996, 44:847.
7. Yasukawa K, Kaminaga T, Kitanaka S, Tai T, Nunoura Y, Natori S, Takido M $3 \beta-p$-Hydroxybenzoyldehydrotumulosic acid from Poria cocos, and its anti-inflammatory effect. Phytochemistry 1998, 48:1357-1360
8. Kamo T, Asanoma M, Shibata H, Hirota M: Anti-inflammatory lanostanetype triterpene acids from Piptoporus betulinus. J Nat Prod 2003, 66:1104-1106.
9. Zhou L, Zhang YC, Gapter LA, Ling H, Agarwal R, Ng K: Cytotoxic and antioxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem Pharm Bull 2008, 56:1459-1462
10. She GM, Wang D, Zeng SF, Yang CR, Zhang YJ: New Phenylethanoid glycosides and sugar esters from Ku-Ding-Cha, a herbal tea produced from Ligustrum purpurascens. J Food Sci 2008, 73:C476-C481.
11. She GM, Xu C, Liu B, Shi RB: Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH Radical Scavenging Activity. J Food Sci 2010, 75:C359-C362.
12. She GM, Xu C, Liu B, Shi RB: Two new monoterpenes from Mentha haplocalyx Briq. Helv Chim Acta 2010, 93:2495-2498.
13. Tai T, Shingu T, Kikuchi T, Tezuka Y, Akahori A: Triterpenes from the surface layer of Poria cocos. Phytochemistry 1995, 39:1165-1169.
14. Kemami WHV, Berg A, Hertel W, Nkengfack AE, Heartweck C: Antiinflammatory and anti-hyaluronate lyase activities of lanostanoids from Piptoporus betulinus. J Antibiot 2004, 57:755-758.
[^1]
Publish with ChemistryCentral and every scientist can read your work free of charge

"Open access provides opportunities to our colleagues in other parts of the globe, by allowing anyone to view the content free of charge."
W. Jeffery Hurst, The Hershey Company.

- available free of charge to the entire scientific community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours - you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

[^0]: * Correspondence: shirb@126.com
 ${ }^{\dagger}$ Equal contributors
 School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Zhonghuan South Road, Wangjing District, Beijing 100102, People's Republic of China

[^1]: doi:10.1186/1752-153X-6-39
 Cite this article as: She et al.: New lanostane-type triterpene acids from wolfiporia extensa. Chemistry Central Journal 2012 6:39.

