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Abstract

Background: Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft
samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing
and tools allowing control of the calculation errors.

Results: We report the development of a software package collecting functions and scripts written in Python for
automated and manual data processing, to extract viscoelastic information about the sample using recorded particle
trajectories. The resulting program package analyzes the fundamental diffusion characteristics of particle trajectories
and calculates the frequency dependent complex shear modulus using methods published in the literature. In order
to increase conversion accuracy, segmentwise, double step, range-adaptive fitting and dynamic sampling algorithms
are introduced to interpolate the data in a splinelike manner.

Conclusions: The presented set of algorithms allows for flexible data processing for particle tracking microrheology.
The package presents improved algorithms for mean square displacement estimation, controlling effects of frame loss
during recording, and a novel numerical conversion method using segmentwise interpolation, decreasing the
conversion error from about 100% to the order of 1%.
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Background
Particle tracking microrheology is a modern tool to inves-
tigate the viscoelastic properties of soft matter, for exam-
ple, biopolymers and the interior, or the membrane of
living cells [1,2] on the microscopic scale. Though embed-
ding tracer particles into such a sample alters the local
structure, this method is still considered non-invasive and
provides important information not available by other
methods [1-4].
The physical background of the method lies in the ther-

mal motion of the tracer particle, which can be connected
to the viscoelastic properties of the local environment
through the generalized Langevin equation [5,6]. Neglect-
ing the inertia term, which contributes to frequencies
in the megahertz range, and assuming that the memory
function is linearly related to the frequency dependent
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viscosity of the medium (through a generalized Stokes-
Einstein relation)[3,5-8], the mean square displacement
(MSD) of the particle can be directly related to the creep
compliance as:

J(τ ) = 3 πa
NDkBT

< �r2(τ ) >, (1)

where τ denotes the time step in which the particle moves
�r distance, < �r2(τ ) > the mean square displacement,
ND the dimensionality of the motion (usually ND = 2 for
particle tracking digital microscopy), kB the Boltzmann
constant, T is the absolute temperature and a the particle
radius, respectively.
Active microrheology (using optical or magnetic tweez-

ers) and macroscopic rheometry commonly characterize
the sample elasticity with the frequency-dependent com-
plex shear modulus, G∗(ω), which is a complex quantity
[4,9,10]. Its real part is known as the storage modulus
G′(ω) and the imaginary part is the loss modulus, G′′(ω).
While J(t) is a description in the time domain, G∗(ω) is
an equivalent characterization in the frequency domain.
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The two types of description are equivalent and intercon-
nected with the relation:

G∗(ω) = 1
iωJ̃(ω)

, (2)

where J̃(ω) is the Fourier transform of J(t). Assuming that
the particle tracks are previously obtained, the frequency
dependent complex shear modulus G∗(ω) can be derived
using equations (1) and (2) after calculating the mean
square displacement.
There are two major algorithm libraries available on the

Interned addressing data handling for microrheology: the
algorithm collection of J. Crocker et al. written in the
interactive data language (IDL) [11], which was translated
to Matlab and expanded by the Kilfoil lab [12]. A sepa-
rate stand alone algorithm is provided by M. Tassieri for
calculating the complex shear modulus from the creep
compliance, written in LabView [13]. However, an exten-
sible integrated framework relying on freely accessible
software and source code integrating multiple conversion
methods is not yet available.
In this paper we present a software package written in

the interpreted programing language Python (http://www.
python.org) collecting functions to support particle track-
ing microrheology related calculations, with emphasis on
those parts providing enhanced functionality. This library
is meant to be an open source, platform independent,
freely extendable set of algorithms allowing to extract
rheology information from particle tracks obtained
previously.
The Rheology software library contains two example

scripts. One called ProcessRheology.py, a configuration
driven program performing all processing steps from par-
ticle trajectory inputs, thus presenting the various capa-
bilities of the library (Figure 1). This program can be
employed as a self-standing calculator or its code can
be used as a template for the user testing the Rheology
library. The other is the Function-test.py, containing test
calculations, and which was also employed to produce the
figures in this article (see the content of the Additional
file 1).

Implementation
Dependencies
The software depends on the following Python packages
for calculations and displaying results:

• Numpy: a library for array manipulation and
calculations [14];

• Scipy: the Python scientific library, from which we
used the gamma function and the nonlinear least
squares fitting function [14];

• Matplotlib: a Matlab-like plotting library to generate
information graphs of the results [15].

Figure 1 Process flow chart of microrheology data. The
fundamental processing steps in particle tracking microrheology as
followed by the ProcessRheology.py script. There are several
parameters that may affect the details of the process, including the
sampling in the MSD calculation and which way the complex shear
modulus is calculated (see the main text for details). In this article we
focus mainly on the later tree steps in the process: the MSD
calculation and conversion methods.

After installation, its functions are available using fol-
lowing import command within the interpreter or a
Python script:

from Rheology import *

Data presentation, data format
Instead of defining individual classes for each data type
(MSD, creep compliance and complex shear modulus), an
alternative technique in Python is to employ generalized
lists, the so called dictionaries or ‘dicts’. A dict is a con-
tainer class holding data which are indexed with arbitrary
keys (marked by quotes in this paper). This is a very gen-
eral and flexible data structure, which we used for all data
in the Rheology package. For example, MSD dicts contain
keys “tau” and “MSD” referring to arrays holding the time
lag and the mean square displacement data, respectively.

Particle trajectories
Particle tracking microrheology starts with the imag-
ing experiments and the image treatment in a strict

http://www.python.org
http://www.python.org
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sense, however, obtaining particle trajectories from video
microscopy is well described in the literature [16-20]
including the statistical difficulties of the process [21-23].
There are various implementations of particle tracking
algorithms available in IDL (see the same website as
for the rheology code) [11,24], Matlab [12,25], LabView
[20,26] or C++ languages [27]. An implementation of the
Grier method [16] is also translated to Python [28].
Thus, we start our discussion by extracting rheologi-

cal information from the particle trajectories, leaving the
implementation of data input/output to the user. As a
good starting template, we recommend the ReadTable()
and SaveTable() functions in the ProcessRheology.py exam-
ple script.

Drift correction
Several experimental systems show a drift: a slow oriented
motion of the sample versus the imaging frame, which is
caused by various factors of the experimenting apparatus.
To remove this drift, which is independent of the sam-
ple, there are multiple possibilities one may consider. If a
reference bead bound to the sample is available, its tra-
jectory provides the drift itself. If multiple particles are
tracked in the same time interval, an average trajectory
may be calculated and used as a reference. If these pos-
sibilities are not available, one has to consider whether
the long time motion is due to drift or it is a charac-
teristic of the investigated sample, because subtracting it
changes the resulted long time lag (low frequency) part of
the viscoelastic characteristics.
The simplest way of data treatment in such cases is

to calculate a smoothened trajectory: e. g. using a run-
ning average, and either subtract this smoothened data
or, in one further step, fit a low order polynomial to the
smoothened data and subtract the fitted values from the
trajectory.
A very simple implementation is available for two

dimensional data sets as:

GetData(timestamps, poslist, indx=0,
order=3,resolution=0.1434, Nd= 1000)

This algorithm takes a position list (parameter poslist),
which is a list of dicts, each describing the positions of a
particle. The indx parameter is used to select one of them.
A position dict contains “X”, and “Y”, which are arrays of
the x and y positions. The dict also contains an index
array denoted with key “indx”, identifying the image index
(serial number) of the given positions. Using this index
allows the tracking algorithm to miss individual frames (e.
g. when the particle drifted out of focus). This index is also
used to define the time point of a position, either by identi-
fying the corresponding time stamps, provided in seconds
in the timestamps array, or if this variable is set to None,

multiplying the index by the optional tscale parameter.
The Nd parameter gives the number of points used in the
running average and the order parameter identifies the
order of the polynomial to be fitted for drift correction. If
Nd is set to −1, the running averaging is off, and if order is
-1, the drift correction is turned off. The resolution is used
to scale the coordinates to micrometers (the same value
for both coordinates).

Mean square displacement (MSD)
Characterizing a soft sample using particle tracking
microrheology strongly relies on the determination of
the mean square displacement. Calculating the MSD has
two possible sets of assumptions: 1.) ensemble averages
are based on recording many tracer particles and assum-
ing homogeneity across the sample. This is the averaging
method considered in theories, and has the advantage
allowing estimation of the time-dependent aging of the
system. Technically this can be achieved by using video
recording-based particle tracking, where the number of
tracers can be increased to the order of tens. 2.) Assum-
ing ergodicity, one can switch from ensemble averaging to
time averaging. This is very important for systems which
are not homogeneous and for cases where only few par-
ticles (1 − 5) can be observed at a time. For samples of
biological origin, time averaging is more suitable because
these samples are seldom homogeneous.
Calculating the time average is done by splitting up the

trajectory into non-overlapping parts and averaging their
displacement. Because the number of intervals decreases
with an increasing lag time, this method has very high
error for large lag time values. Alternatively, it is also pos-
sible to split the trajectory into overlapping regions and
then do the averaging. The resulting statistical errors fol-
low a non-normal distribution, but it has been shown that
using overlapping segments the resulted MSD may show
improved accuracy [29,30] when using lag time values up
to about the quarter of the measurement length (N/4 for
N data points). The results of a test calculation using posi-
tions randomly calculated from a normal distribution with
standard deviation of σX = σY = 0.15 μm in both X and
Y directions are presented in Figure 2. The MSD oscil-
lates around the theoretical value of< �r(τ )2 >= 2(σ 2

X +
σ 2
Y ) = 0.09μm2 as expected, but the data calculated using

overlapping intervals show visibly better accuracy.

msd = MSD(positionlist, tau= 0)

MSD() is the function to calculate the mean square dis-
placement from a single trajectory. The data points are
presented as a two dimensional array positionlist, contain-
ing coordinates ((x, y) or (x, y, z)) in each row.
The second parameter (tau) is used to generate the lag

time values (steps) for which the MSD is calculated. This
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Figure 2mean square displacement data calculated from
simulated data. The distribution of X and Y positions were generated
based on a normal distribution with σ = 0.15 μm. The theoretical
MSD is constant at 0.09 μm2 (black line). Data with non-overlapping
intervals (red + symbols) show higher scattering, the ones calculated
with overlapping intervals (green ×) show a much lower error.

parameter can take various values: If an array or list of
integer values are given, then those are used as index step
values. If a single integer is given between 0 and the num-
ber of positions, then somany index steps (lag time values)
are generated in an equidistant manner. If nothing, or 0 is
given, then values 1 . . .N/4 are used.
Each tau value results in M = M(tau) pairs, where

the step r[ i + tau]−r[ i] is calculated.M also depends on
whether the set was generated using overlapping intervals
(if overlap = True is set).
If an array of time values (in seconds) are provided for

the position data using the optional tvector parameter, the
algorithm will check the time step between each data pair
used. Calculating the mean value of these time steps and
using a relative error, every value outside the mean (1 ±
tolerance) will be ignored (by default tolerance = 0.1).
This process eliminates jumps in the data caused by com-
puter latency during recording.
The function returns a dictionary containing “tau”,

“dtau”, “MSD”, “DMSD” keys. If the time values were not
provided, then “tau” holds the index steps between the
positions and “dtau” is not used.

Creep compliance
Assuming that the generalized Stokes-Einstein relation
holds, the creep compliance is linearly proportional to the
MSD [6]. The MSD to J() function calculates the creep
compliance using equation (1).

J = MSD to J(msd, t0= 0.1, tend= 150,
T= 25.0, a= 1.0)

The calculation requires a dict structure (msd) having
the time values under the “tau” key, and the MSD values

under the “MSD” key (error values are optional). Further
parameters are the temperature T of the experiment in
Celsius degrees, the radius a of the applied tracer particle
in micrometers, and optionally the dimensionality of the
motion D (denoted as ND in equation (1)), which is set to
D = 2 by default.
Calculating the frequency dependent shear modulus

from J(t) with the numerical method proposed by Evans
et al. requires extrapolated values to the zero time point
and to infinite time values. These values are estimated
here, allowing the user to override them before being used
to calculate the complex shear modulus G∗(ω). The zero
time value J0 = J(t = 0) is extrapolated from a linear fit
in the t < t0 region, and the end extrapolation is obtained
from a linear fit to the tend < t part. The slope of the
extrapolated end part is 1/η, where η is the steady state
viscosity [31].
The function returns a new dict containing: “J” (in

1/Pa), “tau”, “eta”, “J0”, “const”, “dJ”, and the fit parameters
as “a0”, “b0” for the first part and “a1”, “b1” for the end part,
where the linear equation J = ait + bi (i = 0, 1) holds.

Calculating the frequency dependent complex shearmodulus
While the connection presented by equation (2) is simple,
there is a major problem with determining J̃(ω) numeri-
cally. It is well known in numerical analysis that applying
a numerical Fourier transform increases the experimen-
tal noise enormously [32]. In microrheology, there are
four commonly applied methods to solve this problem.
The first two address the noise of the Fourier transform
directly by averaging or by fitting, the second two were
suggested in the last decade to improve the transform
itself [6,9,31-33].
In a homogeneous system, where multiple particles can

be tracked, converting theirMSD to creep compliance and
then G∗(ω) using a discrete Fourier transform, allows one
to average the converted values and decrease the noise
this way [32,33]. For cases when the creep compliance can
be modeled using an analytical form, the Fourier trans-
form of the fitted analytical function may be calculated
and used to estimate of G∗(ω) [9].
As we have discussed above, samples of biological origin

are often not homogeneous and their MSD does not fol-
low a well-described analytical function. However, model
calculations suggest, in agreement with experiments, that
biopolymers and many polymer gels show power law
behavior at various time ranges [34-36]. The third and
fourth conversion approaches have been suggested for
such systems in the microrheology literature. One uses
a power law approximation of the MSD or the creep-
compliance [6] (we shall call the Mason method), and the
other calculates a linear interpolation between the data
points and applying a discrete Fourier transform on it [31]
(we shall cite as the Evans method).
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Because these methods have their strength and weak-
ness, we summarize them and their implementation
below. Recently we have shown that the accuracy of the
Evans method can be greatly improved by using local
interpolation of the data in a splinelike manner without
forcing a single function to be fitted to the whole data
set. This improvement is also included in the Rheology
framework and will be discussed below.

The Masonmethod
This is a fast conversion method based on the Fourier
transformation of a power function, which has been used
in various works in the last decade [6-8,37-39]. Briefly,
let us consider a generalized diffusion process, where the
MSD is following a power law: < �r(t)2 >= 2NDDtα
[40], where D is the generalized diffusion coefficient, and
0 < α ≤ 2. In the case of α = 1 we can talk about regu-
lar Brownian diffusion, α < 1 describes subdiffusion and
α > 1 superdiffusion, indicating active forces participat-
ing in the process. Using the generalized Stokes-Einstein
equation (1) we consider Brownian and subdiffusion pro-
cesses, thus α ≤ 1 [5,40]. In this case the creep compliance
will also be described with a power function as:

J(t) = J0tα (3)

The complex shear modulus can be directly calculated
using a gamma function (Figure 3), in the form of:

G∗(ω) = e
iπα
2

ωα

J0	(1 + α)
= e

iπα
2

J(t = 1/ω)	(1 + α)
. (4)

Usually this equation is presented containing the MSD
[41], but the key feature, the symmetry between the
time dependent creep-compliance and the frequency
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Figure 3 Testing the Masonmethod. Complex shear modulus
(storage modulus (red +) and loss modulus (green ×)) calculated
from a power law creep compliance in the form of J(τ ) = 0.1 τ 0.75

and converted using the J to G Mason() function and theoretically
(solid line) using equation (4).

dependent complex shear modulus, is more apparent in
this form. Themethod generalizes this symmetry between
ω ↔ t : ω = 1/t, and assumes it holds for the whole
measured time range [6], even when the exponent α of the
power law varies with time.
However, this is a highly specific case, and the symmetry

does not hold for most of the functions [41]. To improve
the fit quality, a slightly more complicated version of this
formula has been proposed by Dasgupta et al. in [38],
based on empirical corrections.
The J to G Mason() function implements both meth-

ods based on references [6,38] and the leastsq() function
of scipy, which is a modified Levenberg-Marquardt mini-
mization algorithm.

G = J to G Mason(J,N=30, advanced=True,
logstep=True)

The algorithm takes a creep-compliance dict (J), and
fits a power function locally in the form of equation (3)
to estimate α and calculates the complex shear modu-
lus at ω = 1/t using equation (4). The algorithm uses
a Gaussian function to weight the neighbors in the local
fit as it is described by Mason et al. [6]. N defines the
desired number of resulted data points, which are created
by equidistant sampling in the linear or logarithmic space
between 1/tmax . . . 1/tmin. The logarithmic sampling is
activated by the logstep parameter, which is set by default.
The resulted dict contains ’omega’ and ’f ’ for the circu-
lar frequency and frequency respectively, and a ’G’ array
storing the corresponding complex shear moduli.
There are several further parameters to control the pro-

cess, from which setting the advanced parameter forces
the use of the method proposed by Dasgupta et al. instead
of the original Masonmethod, and the verbose switch pro-
vides graphical feedback on how the local fitting proceeds.
A test example is presented in Figure 3 using a creep
compliance in the form of equation (3) and converted
both numerically and analytically. Because this method is
accurate for power law creep compliances, the conversion
matches within machine precision.

The Evans method
The fourth method we again discuss in detail. It is based
on the work published by Evans et al. [31]. This method
considers a linear interpolation between theN data points
and provides a conversion in the form of equation (5)[41].

G∗(ω) = iω
iωJ0 + ∑N

k=0 (Ak+1 − Ak)e−iωtk
, (5)

where Ais are defined by:

Ak = Jk − Jk−1
tk − tk−1

, where 0 < k ≤ N , A0 = 0, AN+1 = 1
η
.

(6)
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J0 and η are already estimated using the linear fits in
the MSD to J() function. Using equation (5) is straight-
forward, and allow for the calculation of G∗(ω) at any ω

values. The natural selection of a suitable frequency range
would be from 0 to N π

T (the unit is 1/s) in N/2 steps as
it is common for the discrete Fourier transform of equally
sampled data [32]. The corresponding function is:

G = J to G(J)

The algorithm generates a linear array of frequencies,
but the number of points is limited to be maximum 1000,
usually more than sufficient (MSD and creep compliance
data arrays may hold several thousand points). The result
is a similar dictionary as it was for the Mason method,
and can be tested using a Maxwell-fluid, which has a lin-
ear creep compliance in the form of J(t) = 1/E + t/η
(Figure 4).
There are various details worth mentioning about this

method, which may affect the accuracy of the result in
general cases. It is clear in equation (5), that the method is
sensitive to the Ak+1 −Ak terms, which, in extreme cases,
may be either very small for a nearly linear part of J(t) or
very high for sudden jumps in the experimental data. In
order to reduce round-off errors, one may eliminate the
close to zero values, (when |Ak+1 − Ak| < ε) by activating
the filter parameter.
This numerical conversion method has two basic prob-

lems. First, from equation (5) it is apparent that the
complex shear modulus is directly related to the numeri-
cal Fourier transform of the Ak+1 − Ak set, and thus very
sensitive to the noise of these data. Second, the limited
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Figure 4Maxwell fluid, testing the Evans method. The complex
shear modulus of a Maxwell fluid with Young modulus of E = 10 Pa
and viscosity η = 0.2 Pas, calculated using J to G() (symbols) and
analytically (solid line). The storage modulus (red +) and loss modulus
(green ×) data calculated numerically fits well to the theoretical
values presented by the solid black lines.

bandwidth causes the Ak values to be a poor represen-
tation of the local derivative of the creep compliance,
resulting in a strong deviation (usually an unphysical cut-
off) of the calculated shearmodulus. This latter problem is
well represented on a test example of a Kelvin-Voigt solid
characterized by a Young’s modulus of E = 10 Pa and
viscosity η = 0.2 Pas (Figure 5).
The conversion can be improved by increasing the

bandwidth of the data, or decreasing the frequency range
where G∗(ω) is calculated (using the omax parameter). A
third alternative is using model interpolations to increase
the bandwidth numerically. Because most experimental
data cannot be fitted with a single analytical function for
all τ values, we have developed a method to fit the MSD at
consecutive intervals in a splinelike manner [41].

Adaptive splinelike fitting
Biopolymer samples commonly show monotonic MSD,
frequently described by power laws at various time seg-
ments. This makes the choice of the power function a
good candidate for the local fitting. To count for devi-
ations from power laws at short time values, the fitting
system also allows the use of a Kelvin-Voigt solid as an
alternative model for short time scales, in the case of more
elastic samples. Including aMaxwell fluid as an option was
not necessary, since the Evans method provides perfect
fits for linear MSDs (see Figure 4).
Because this algorithm has not been published pre-

viously, we describe it here in detail. The procedure is
designed to run automatically being controlled only by
selecting the start interval of the data and a scaler, which
defines how fast the fitting range should increase with
time. The key steps are:
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Figure 5 Kelvin-Voigt solid. Storage modulus (red +) and loss
modulus (green ×) calculated for a simulated Kelvin-Voigt solid using
the J to G() function. The numerical results deviate significantly from
the theoretical values represented by the solid lines.
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1. define the data range using indices i0 = 0 and
i1 = i(t0), containing at least 4 data points;

2. fit function from i0 . . . i1, calculate the squared error
of each point and estimate the average error;

3. find the last point around i1 where χ2(i2) < χ2
mean

and redefine i1 as this point i1 = i2 (stretching or
shrinking the fitting range to a reasonable maximum)

4. recalculate the fit and errors, store as the current
segment

5. if we reached the end (or close to the end), finish the
cycle, return with the results

6. otherwise, define the new fitting range, using the
scaler parameter (by default use i0 . . . scaler × i0)

7. return to 2 (see Additional file 1)

The exact procedure calculating the new range in each
step may vary depending on the mode an optional key-
word parameter, allowing for some control for functions
which show fast changes or slow changes with noise. The
default method (mode=“scaler”) described above works
well for most MSDs with some noise but monotonic
trends. (More details are available in the help of the library
and the config.example text file in the Examples folder of
the package).
The corresponding function call is:

fits = MSD power fit(msd, t0=0.2,
scaler=10.0).

Completing the above algorithm, in the next step the
program checks where the fits would cross each-other in
the neighboring ranges, and readjusts them to the crossing
point, if it lies within the union of the two ranges. This step
helps to maintain a smoother approximation of the exper-
imental data. Turning verbosity on using verbose=True,
one may see details about how the algorithm operates.

Dynamic and static interpolation
The return value (fits) is a list of dicts, each containing
the fitting parameters of one segment. This list can be
directly used to calculate the interpolation of the original
data using:

msd2 = MSD interpolate(msd, fits, smoothing
= True, Nsmoothing=10, insert=10,
factor=3)

The interpolation and insertion of new points before the
first data point will increase the bandwidth of the origi-
nal data. The factor parameter controls the oversampling
of the original data (here it is set to 3× oversampling).
Inserting new data points between 0 and the first time τ0
is specified by insert = 10.
Estimating how many new points are required during

this resampling procedure is a difficult question in general.

The above example uses a static approach, simply insert-
ing factor points between every two original data points,
which results in a very large equidistant data set. Alterna-
tively we provide a dynamic method, which is controlled
by an error parameter.
Investigating the form of equations (2) and (6), one can

see that the accuracy of the Evans method is strongly
related to how accurately equation (6) approximates the
local derivative of J(t). Knowing the analytical form of
the interpolating functions, this error can be approxi-
mated using the function (f ) and its second derivative
(f ”) [32,41]. Based on this approximation and specifying a
local error ε, the minimal step size at any time point h(t)
can be estimated as:

h = ε

√
fk(tk)
fk ′′(tk)

. (7)

Using h as a minimal step size for each fitted seg-
ment, the program can dynamically interpolate the data
and increase the number of points only where the creep
compliance changes faster. This results in a non-equally
sampled data set, which (after calculating the creep com-
pliance) can be well handled by both theMSD to J() func-
tion and subsequently the numerical conversion method
J to G(), resulting in an improved complex shear modu-
lus. To eliminate further bandwidth problems, the maxi-
mal desired circular frequency ωmax can be forced to Nπ

T
using the omax parameter.
The consequence of this fitting and interpolation pro-

cedure is an increased bandwidth and decreased noise
in the interpolated data set. The resulting accuracy is
some orders of magnitude larger than the specified ε but
strongly related to it. Therefore the user has to estimate
the suitable ε for the given problem. For example, insert-
ing 10 new points between 0 − t0 and requesting an
accuracy of ε = 5 × 10−4, the algorithm has corrected
the errors of Figure 5 to about 1% relative error on aver-
age (Figure 6). The Mason method produces about 100%
relative error for the loss modulus of the same conversion,
originating from the failure of its power law assumption,
and can not be improved by interpolation [41].
The advantage of employing non-equally sampled data

as the result of the dynamic interpolation is clear if we
compare the required smallest time step produced by this
method. The results indicate hmin ≈ 2 × 10−6 s, which
would increase the number of data points about 5000×
in the case of equidistant sampling. In comparison, the
increment of the number of data points is only about 20%.
For data sets following various trends in the different

time segments (thus the fitting procedure identifies multi-
ple fitted regions), the transition between the regions can
be smoothened using a linear interpolation between the
two smoothing functions. The range of this smoothing is



Maier and Haraszti Chemistry Central Journal 2012, 6:144 Page 8 of 9
http://journal.chemistrycentral.com/content/6/1/144

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

G
’, 

G
’’,

 P
a

ω, 1/s

Figure 6 Dynamic resampling. Dynamic resampling can correct the
errors of the Evans method resulting in an improved fit. The storage
modulus (red +) and loss modulus (green ×) data calculated
numerically shows a good fit to the theoretically predicted values
(black lines).

defined by the NSmooth parameter. The range is identi-
fied in the original data, but then applied to the refined
data set. The result is an MSD, where sudden jumps are
reduced, minimizing the presence of oscillatory artifacts
in the resulted complex shear modulus G∗(ω).

Conclusions
In this paper we have presented a free software solution
for analyzing particle tracking data for microrheology.
Our software library implements the time average calcu-
lation of mean square displacement with control over the
time shift in the data, and conversion methods to calcu-
late the creep compliance and the complex shearmodulus.
Beyond the two most commonmethods mentioned in the
literature, we have developed a dynamic local fitting pro-
cedure, which allows spline-like fitting of the MSD and
improved conversion accuracy to about 1% from about
100% for a Kelvin-Voigt model test.

Availability and requirements
Lists the following:

• Project name: Rheology for Python
• Project home page: http://launchpad.net/

microrheologypy/
• Operating systems: Platform independent (Linux,

Windows and Max OSX tested)
• Programing language: Python 2.7
• Other requirements: Numpy 1.5, Scipy 0.1,

Matplotlib 1.0
• License: LGPL v3
• Any restrictions to use by non-academics: see

license

Additional file

Additional file 1: rheology.zip - compressed ZIP archive containing
the Rheology Python package. The archive contains several files. The
source code in the Rheology subfolder, a setup.py for installation,
README.txt and License.txt files and the Example subfolder. Installation (as
usual in python):

python setup.py build; python setup.py install

The Example subfolder contains two Python scripts. The Function-test.py
can be used to run test calculations and see the example plots presenting
that all functions work properly. The figures presented in this paper were
also generated by this script.
The ProcessRheology.py is a batch processing script, controlled by
commands and parameters provided in a config.txt plain text file. An
example of this file is also included here, containing detailed description of
every parameter. This scripts is a fully functioning microrheology data
evaluation toolkit, utilizing the functions of the Rheology package.
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MSD, Mean square displacement.
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