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Abstract
In these recent years, magnetite (Fe3O4) has witnessed a growing interest in the scientific community as a potential material in various fields of application namely in catalysis, biosensing, hyperthermia treatments, magnetic resonance imaging (MRI) contrast agents and drug delivery. Their unique properties such as metal–insulator phase transitions, superconductivity, low Curie temperature, and magnetoresistance make magnetite special and need further investigation. On the other hand, nanoparticles especially gold nanoparticles (Au NPs) exhibit striking features that are not observed in the bulk counterparts. For instance, the mentioned ferromagnetism in Au NPs coated with protective agents such as dodecane thiol, in addition to their aptitude to be used in near-infrared (NIR) light sensitivity and their high adsorptive ability in tumor cell, make them useful in nanomedicine application. Besides, silver nanoparticles (Ag NPs) are known as an antimicrobial agent. Put together, the [image: $${\text{Fe}}_{ 3} {\text{O}}_{ 4} {\text{Au}}_{x} {\text{Ag}}_{y} \left( {\left\{ {x,y} \right\} = \{ 0 , 1\} } \right)$$] nanocomposites with tunable size can therefore display important demanding properties for diverse applications. In this review, we try to examine the new trend of magnetite-based nanomaterial synthesis and their application in catalysis and nanomedicine.
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Background
Nanostructures have inherited particular properties which are linked with their size and their morphology. These physical properties have a significant effect on their application [1, 2]. Among these nanostructures which have aroused a huge application, magnetic iron oxide (Fe3O4 and Fe2O3) NPs have attracted much attention especially in the catalysis for chemical degradation and biomedical applications due to their low toxicity, superparamagnetic and low Curie temperature. Indeed, in recent studies, magnetite nanocomposites have been successfully used as a magnetically recyclable catalyst for the degradation of organic compounds [3, 4] while further research [5] have demonstrated the non-toxicity of the Fe3O4 nanoparticles on rat mesenchymal stem cells and their ability to label the cells. However, these iron oxides are unstable due to their ability to undergo oxidation easily [5]. To overcome this issue, a combination with noble metal NPs such as silver (Ag) or gold (Au) has been used. This combination provides not only an important stability for these iron oxides in solution, but also the ability to bind various biological ligands with convenient enhancement of optical and magnetic properties (Fig. 1) [6–8]. These Fe3O4Au
                  x
                Ag
                  y
                 NPs have the advantages to be useful in suspension application. Such a suspension can interact with an external magnetic field to facilitate a magnetic separation or can be guided to a specific area, thus facilitating a magnetic resonance imaging for medical diagnosis and an alternating current (AC) magnetic field-assisted cancer therapy [9–11].[image: A13065_2017_288_Fig1_HTML.gif]
Fig. 1
                                    A Antigens separation by Fe2O3/Au core/shell nanoparticles, and B subsequent rapid detection by immunoassay analysis based on SERS [6]




                     
Furthermore, in the core–shell types, the properties of the nanostructures change from one structure to another, depending on the size, the shape and the shell or core composition. In this nanostructure, the shell can prevent the core from corrosion or dissolution. This effect can lead to a major enhancement of the thermal, mechanical, and electrical properties of the system [12, 13]. Besides, because of the coupling between the spectrally localized surface plasmon resonance (LSPR) of the noble metal NPs and the continuum of interband transitions of the other hybrid component in the core–shell nanostructures, Fano resonances (FR) in strongly coupled systems can arise. This plasmon hybridization can be rationalized and can serve as a good substitute in biological applications [14, 15].
Since the dimensions of the individual components are nanoscale level or comparable to the size of the biomolecules, the combination is always expected to proffer novel functions which are not available in single-component materials. However, only appropriate sizes of the Fe3O4Au
                  x
                Ag
                  y
                 NPs exhibit such properties and are superparamagnetic [16]. Therefore, tailoring of an appropriate nanostructure constitutes the main problem.
Moreover, in a recent review, Ali et al. [17]. have examined a large range of synthesis methods of nanomaterials. In these methods, mechanochemical (i.e., laser ablation arc discharge, combustion, electrodeposition, and pyrolysis) and chemical (sol–gel synthesis, template-assisted synthesis, reverse micelle, hydrothermal, co-precipitation, etc.) methods have extensively been studied. According to these authors, various shapes and size of NPs (i.e., nanorod, porous spheres, nanohusk, nanocubes, distorted cubes, and self-oriented flowers) can be obtained using nearly matching synthetic protocols by simply changing the reaction parameters [18]. Although they claimed the possibility to synthesize specific size and shape, they did not show the different routes to produce these physical properties. In this review, we will intensively discuss the way to design Fe3O4Au
                  x
                Ag
                  y
                 namely Fe3O4 nanocomposites in which Au and Ag are involved. Particular interest will be paid to core–shell nanostructures and their application in catalysis and nanomedicine.
Synthesis methods
Fe3O4 synthesis
Among the most popular synthesis methods, co-precipitation is widely used for the synthesis of Fe3O4 NPs. It is convenient and considered as the easiest method. In this method, Fe2+ and Fe3+ are the main precursor in solution. The starting molar ratio Fe2+/Fe3+ [19, 20], the basicity (NaOH, NH4OH, and CH3NH2) [21], and the ionic strength [N(CH3)4+, CH3NH3
                              +, NH4
                              +, Na+, Li+, and K+] [22, 23] of the media play a major role. For instance, studies performed by Laurent et al. [24] have shown a change in magnetite NPs size by adjusting the basicity and the ion strength, and a change in shape by tuning the electrostatic surface density of the nanoparticles. For Patsula et al. [5], the synthesis of different shape, size, and particle size distribution of Fe3O4 can be done through the different reaction temperatures, the concentration of the stabilizer, and the type of high-boiling-point solvents. Other factors such as an inlet of nitrogen gas or agitation are also critical in achieving the desired size, and the morphology of the magnetite NPs [25].
Moreover, in base media for instance, Fe(OH)2 and Fe(OH)3 are easily formed. The aqueous mixture of Fe2+ and Fe3+ sources at Fe3+/Fe2+ = 2:1 molar ratio can lead to a black color product of Fe3O4 [26] which is governed by Eq. (1):[image: $${\text{Fe}}^{ 2+ } + 2 {\text{Fe}}^{ 3+ } + 8 {\text{OH}}^{ - } \to {\text{Fe}}_{ 3} {\text{O}}_{ 4} + 4 {\text{H}}_{ 2} {\text{O}}$$]

 (1)


                           
In recent study [27], it has been reported that the molar ratios smaller than Fe3+/Fe2+ = 2:1 cannot compensate the oxidation of Fe2+ to Fe3+ for the preparation of Fe3O4 nanoparticles under oxidizing environment. However, in synthesis evolving in anaerobic conditions, a complete precipitation of Fe3O4 is likely formed, and no attentiveness is needed about the starting Fe3+/Fe2+ ratio as the excess of Fe2+ can be converted into Fe3+ in the Fe3O4 lattice as described by Schikorr reaction (Eq. 2):[image: $$3{\text{Fe}}\left( {\text{OH}} \right)_{2} \to {\text{Fe}}_{3} {\text{O}}_{4} + {\text{H}}_{2} + 2{\text{H}}_{2} {\text{O}}$$]

 (2)


                           
At low temperature, with the presence of organic compounds, the anaerobic conditions can also give rise to the formation of “green rust”. Likely, the excess of iron(II) hydroxide in the medium along with this green rust can progressively be transformed into iron(II, III) oxide. It should also be noted that all along these syntheses in aqueous media, the pH of the reaction mixture has to be adjusted in the synthesis and the purification steps to achieve smaller monodisperse NPs. Furthermore, in an oxygen-free environment, most preferably in the presence of N2, the bubbling nitrogen gas can help to prevent the NPs from oxidation or to reduce the size of the NPs [16].

Synthesis of Fe3O4Au
                      x
                    Ag
                      y
                    
                           
The hybrid nanostructures with two or more components have attracted more attention due to the synergistic properties induced by their interactions. In the synthesis of nanocomposites, several techniques such as co-reduction of mixed ions, organic-phase temporary linker and seed-mediated growth have been explored [28, 29]. All of them have proven their feasibility and advantages. The aim of the application is the main motivation of the chosen technique as the structure and surface composition of the shell or the core are among the primordial parameters on which the properties of the nanocomposites are subjugated [30, 31].
The co-reduction of mixed ions is known to be less selective in core–shell synthesis. In this procedure, the component which acts as the core can be formed randomly depending on the reactions parameters (pH, temperature, agitation, duration of the reaction, standard potential associated with each ion, etc.) [32, 33]. Furthermore, when designing a solution-based synthetic system for core/shell multicomponent nanocrystals, it is important to consider the electronegativity of the metals for the selection of the appropriate reducing agent. It is relatively difficult to judge whether they can be prepared in a designed synthetic system because of their huge difference in the oxidizing power. This electronegativity is important to avoid polydispersity and keep the by-products in nanoscale level. This process is not suitable for Fe3O4 nanocomposites synthesis as the iron ions may undergo reduction, but it can be used for the Au–Ag nanocomposite synthesis.
As the properties depend on the component which acts as core or shell, an appropriate design can be achieved using typical synthetic route to avoid the haphazard core/shell formation. For instance, for a given application, one would want to have a selected component as the core. This aim can be achieved efficiently using chemical makeup (Fig. 2a) of functional groups (organic-phase temporary linker) to modify the selected core surface. In this purpose, hydrophilic functional groups such as NH2 and SH can promote the attachment of the selected metal as a core while hydrophobic functional groups such as CH3 and PPh2 lead to minimal attachment [8, 34]. In this process, the adsorption of one component onto the core is affected by the surface charge, the solution pH, and the precursor concentrations. The thickness of the shell and the size of the core are strongly pH-dependent [35–37]. This chemical makeup method can also be used to prevent iron NPs from oxidation and agglomeration [23].[image: A13065_2017_288_Fig2_HTML.gif]
Fig. 2Schematic diagram showing the mechanism of formation of core/shell NPs and heterodimers: (a) chemical makeup method and (b) seed-mediated technique




                           
Another similar method without chemical makeup is seed-mediated growth (Fig. 2b). In this process, the core/shell NPs is designed by growing a uniform shell on the core NPs through adsorption of the shell compound ions on the seed-mediated NPs [38, 39]. This growth technique can be used for the fabrication of NPs such as Fe3O4Au
                      x
                    Ag
                      y
                     with controlled size by acting on the precursor concentration of the shell component. In addition, the seed particles themselves can participate in the reaction as catalysts, where charge transfer between the seeds and newly nucleated components is involved. This effect lowers the energy for heterogeneous nucleation. As long as the reactant concentration, seed-to-precursor ratio, and heating profile are controlled, core/shell nanostructures or multicomponent heterostructures [40] and the desired thickness [41] can be obtained.
Besides core–shell nanostructures, heteromultimers with two joined NPs (Fig. 3, Step 1 and 2) sharing a common interface can be synthesized. The growth of heteromultimers follows procedures similar to those of core–shell NPs synthesis methods. However, a convenient route to control core/shell vs. heterodimer formation is mainly obtained by controlling the polarity of the solvent (Fig. 2b). It has been proposed that when a magnetic component, such as Fe3O4, is nucleated on Au or Ag, electrons will transfer from Au or Ag to Fe3O4 through the interface to match their chemical potentials [42, 43]. The charge transfer leads to electron deficiency on the metal (Au or Ag). If a polar solvent is used in the reaction, the electron deficiency on the metal can be replenished from the solvent leading therefore to the formation of multiple nucleation sites. This process results in continuous shell formation. On the other hand, if a non-polar solvent is used, once a single nucleated site depletes the electrons from the metal, the electron deficiency cannot be replenished from the solvent. This phenomenon prevents new nucleation events and promotes heterodimer NPs [44–46]. Additionally, strong reductant such as sodium borohydride promotes heterodimer formation [47].[image: A13065_2017_288_Fig3_HTML.gif]
Fig. 3Synthetic scheme for the preparation of heterodimer nanoparticles by chemical makeup (Step 1) method and seed-mediated technique (Step 3) [46]




                           


Physicochemical properties of Fe3O4 and nanocomposites
Fe3O4 is a typical magnetic iron oxide with a cubic inverse spinel structure in which oxygen forms a face-centered cubic close packing. Some of the Fe3+ occupy 1/8th of interstitial tetrahedral while equal amounts of Fe3+ and Fe2+ fill half of the available octahedral sites [48, 49] in the space group [image: $$Fd3\bar{m}$$] with 0.8394 nm as lattice parameter. The conduction and the magnetism properties are mainly due to the distribution of these iron ions. Indeed, the electron spins of the Fe2+ and Fe3+ in the octahedral sites are coupled while the spins of the Fe3+ in the tetrahedral sites are anti-parallel coupled to those in octahedral sites. As the magnetic moments of the Fe3+ and Fe2+ are 5 and 4 Bohr magneton respectively, it results a magnetic moment equal to (→5←4←5) = 4 Bohr magneton (Fig. 4). This net effect is that the magnetic contributions of both sets are not balanced and it raises a permanent magnetism.[image: A13065_2017_288_Fig4_HTML.gif]
Fig. 4
                                       a The inverse spinel structure of Fe3O4, consisting of an FCC oxygen lattice, with tetrahedral (A) and octahedral (B) site. b Scheme of the exchange interaction in magnetite [50]




                        
Because of a double-exchange interaction existing between Fe2+ and Fe3+ in octahedral sites due to d orbital overlap between iron atoms, the additional spin-down electron can hop between neighboring octahedral-sites, thereby resulting in a high conductivity [20, 50]. The electrical conductivity in Fe3O4 is generally caused by the superposition of the surface plasmon (SP) band and SP hopping conduction. Indeed, below room temperature, the band conduction is the dominant transport mechanism [51–53]. However, these properties can be improved when magnetite NPs are doped using a specific component such as Au and Ag. The obtained nanostructures can easily and promptly be induced into magnetic resonance by self-heating, applying the external magnetic field, or by moving along the attraction field [25, 54, 55]. Owing to the quantized oscillation of conduction electrons under an external electromagnetic field, these NPs can exhibit strong surface plasmon resonance (SPR) absorption similar to the metal NPs themselves [56, 57]. The ideal core size to obtain a perfect SPR is around 10 nm, and when this size is far less, these NPs show little or no SPR absorption [58, 59]. The controlled coating of either Au or Ag on the Fe3O4/(Au, Ag) NPs facilitates the tuning of the plasmonic properties of these core/shell NPs. Moreover, depositing a thicker Au shell on the magnetite NPs leads to a red-shift of the absorption band, while coating Ag on these seed particles results in a blue-shift of the absorption band compared with the metal absorption band itself. These phenomena are relevant to the shell thickness and the metal polarization regarding some parameters such as the dielectric environments, the refractive index of the second component or the charge repartition on the metal [40].

Applications
Fe3O4Au
                      x
                    Ag
                      y
                     catalytic properties
The physicochemical properties of Fe3O4Au
                      x
                    Ag
                      y
                     arise from the polarization effect at the interfaces of the different component of Fe3O4Au
                      x
                    Ag
                      y
                    . This polarization allows Fe3O4Au
                      x
                    Ag
                      y
                     hybrid nanostructures to form a storage structure of electrons (Fig. 5) which are discharged when exposed to an electron acceptor such as O2, or organic compound. This structure can therefore give the ability of displaying a high catalytic activity towards an electron-transfer reaction, or excellent surface-enhanced Raman scattering activity when Au or Ag acts as a shell [60–62]. The formation of a space-charge layer at two different components interface is known to improve charge separation under band gap excitation, thus generating high density catalytic hot pot sites [63]. Indeed, these nanocomposites are useful in promoting light induced electron-transfer reactions and can be used as a powerful material for charge separation. In addition, individually, Ag NPs have a high antibacterial activity [64], Au NPs are optical active [65] while Fe3O4 NPs are supermagnetic [9]. All these properties make Fe3O4Au
                      x
                    Ag
                      y
                     NPs convenient to be used in magnetic separation and in catalytic degradation of pollutants. Another advantage is that they are perfectly recycled in several folds [66].[image: A13065_2017_288_Fig5_HTML.jpg]
Fig. 5Arbitrary charge separation in core–shell nanostructures: (i) interface, (e) high density of electron and (h) high density of hole




                           

Nanomedicine application
Avoiding alteration of healthy cell in chemotherapy, immunotherapy and radiotherapy is a major concern as these techniques do not specifically target the cancerous cells [67]. In a recent study [41], the toxicity grade of magnetic NPs on mouse fibroblast cell line has been classified as grade 1, which belongs to no cytotoxicity. Besides, the hemolysis rates are found to be far less than 5% while an acute toxicity testing in beagle dogs has shown no significant difference in body weight and no behavioral changes. Meanwhile, blood parameters, autopsy, and histopathological studies have shown no significant difference compared with those of the control group. These results suggest that Fe3O4Au
                      x
                    Ag
                      y
                     NPs can be considered as an alternative agent to overcome the observed side effects in tumor treatment.
However, the trend in Fe3O4Au
                      x
                    Ag
                      y
                     NPs concept is to deliver the drugs such as anticancer and at the same time, to observe what happens to the cancerous cells without damaging the healthy cell. This concept can be achieved thanks to the antimicrobial, magnetic and optic activities of the Fe3O4Au
                      x
                    Ag
                      y
                     NPs. These hybrid NPs can be ideally used as magnetic resonance imaging (MRI) contrast enhancement agents.
In recent studies [6, 45, 68–72], authors have also shown that Fe3O4Au
                      x
                    Ag
                      y
                     NPs can be manipulated using external magnetic field either for a magnetic separation of biological products (Fig. 6), a magnetic field-assisted cancer therapy and site-specific drug delivery or as a magnetic guidance of particle systems for MRI and for surface enhanced Raman spectroscopy detection.[image: A13065_2017_288_Fig6_HTML.gif]
Fig. 6Determination of human immunoglobulin G using a novel approach based on magnetically (Fe3O4@Ag) assisted surface enhanced Raman spectroscopy [68]




                           
Well-engineered Fe3O4Au
                      x
                    Ag
                      y
                     NPs can effectively guide heat to the tumor without damaging the healthy tissue as injected Fe3O4Au
                      x
                    Ag
                      y
                     nano-sized particles tend to accumulate in the tumor. This accumulation is done either passively through the enhanced permeability and retention effect or actively through their conjugation with a targeted molecule due to the unorganized nature of its vasculature. When applying hyperthermia with these NPs, the tumor temperature can increase up to 45 °C whereas the body temperature remains at around 38 °C [73, 74]. This ability of such NPs prevents the healthy cell from being altered.
In addition, gold NPs are known to be strong near-infrared (NIR) absorbers. Their effectiveness in cancer like breast and tumor optical contrast has been demonstrated and, the optical contrast of the tumor can be increased by 1 ~ 3.5 dB using injected Au NPs [75]. The applications of Fe3O4Au
                      x
                    Ag
                      y
                     NPs have therefore not only the magnetism properties of iron oxide that renders them to be easily manipulated and heated by an external magnetic field, but also an excellent NIR light sensitivity and a high adsorptive ability from the metal layer which make them useful for photothermal therapy [41, 76, 77].



Conclusions
Recent synthetic efforts have led to the understanding of the formation of a large variety of multicomponent NPs with different levels of complexity. A selected nanostructure with hybrid components can be synthesized by tailoring the synthesis parameters. Despite these exciting new developments, the study of multicomponent NPs is still at its infant stage compared with most single-element systems. In this purpose the mastery of the synthesis process of Fe3O4Au
                  x
                Ag
                  y
                 nanocomposites may be a milestone for their extensive application. Furthermore, the strong coupling between the different components exhibits novel physical phenomena and enhance their properties, thus, making them superior to their single-component counterparts for their application in nanomedicine and catalysis. This novel agent will help in diagnosis and treatment of terminal diseases efficiently by using their guiding capability. They may also provide an alternative to the highly toxic chemotherapy or thermotherapy, with the use of less toxic nano-carriers as anticancer agents and with less heat for healthy cells.
This application may pave a new dimension in cancer treatment and management in the near future. Another benefit of Fe3O4Au
                  x
                Ag
                  y
                 nanocomposites may be found in their highly catalytic properties for contaminant degradation in industry and waste processing. This last point is imperative for fighting against upstream roots of water-borne diseases.

Authors’ contributions
EKF: General writing of the article. DL and CK: General editing of the article. KMG: Review of catalysis studies of the article. BYS and AT: Review of nanomedicine studies of the article. All authors read and approved the final manuscript.
Acknowledgements
The authors acknowledge support provide by Felix Houphouet Boigny University and the friendly collaboration with INPHB, SIT and ECSFRI. Cong Kong would like to thank the Yangfan project (14YF1408100) from Science and Technology Commission of Shanghai Municipality – PR China.

Competing interests
The authors declare that they have no competing interests.

Funding
The authors gratefully acknowledge financial support from The World Academic of Science (TWAS) under Grant No. 16-510 RG/CHE/AF/AC_G–FR3240293301 and, The Scientific and Technological Research Council of Turkey (TUBITAK) (Grant No. 2221) through its sabbatical leave.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


[image: Creative Commons]
                           Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

References
1.
Barakat NAM, Abdelkareem MA, El-Newehy M, Kim HY (2013) Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res Lett 8(1):402–407CrossRef

2.
Liu XQ, Iocozzia J, Wang Y, Cui X et al (2017) Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10(2):402–434CrossRef

3.
Lin FH, Doong RA (2011) Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115(14):6591–6598CrossRef

4.
Zhu MY, Diao GW (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115(39):18923–18934CrossRef

5.
Patsula V, Kosinova L, Lovric M, Hamzic LF et al (2016) Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 8(11):7238–7247CrossRef

6.
Bao F, Yao JL, Gu RA (2009) Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 25(18):10782–10787CrossRef

7.
Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986CrossRef

8.
Freitas M, Couto MS, Barroso MF et al (2016) Highly monodisperse Fe3O4@Au superparamagnetic nanoparticles as reproducible platform for genosensing genetically modified organisms. ACS Sens 1(8):1044–1053CrossRef

9.
Ge SJ, Agbakpe M, Wu ZY, Kuang LY et al (2015) Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles. Environ Sci Technol 49(2):1190–1196CrossRef

10.
Li WP, Liao PY, Su CH, Yeh CS (2014) Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core–shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136(28):10062–10075CrossRef

11.
Das R, Rinaldi-Montes N, Alonso J, Amghouz Z (2016) Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl Mater Interfaces 8(38):25162–25169CrossRef

12.
Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5(17):7664–7684CrossRef

13.
Quaresma P, Osorio I, Doria G, Carvalho PA et al (2014) Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4(8):3659–3667CrossRef

14.
Pena-Rodriguez O, Pal U (2011) Au@Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3(9):3609–3612CrossRef

15.
Qian J, Sun YD, Li YD, Xu JJ, Sun Q (2015) Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking. Nanoscale Res Lett 10(10):17–24CrossRef

16.
Soenen SJ, Himmelreich U, Nuytten N, Pisanic TR et al (2010) Intracellular NP coating stability determines NP diagnostics efficacy and cell functionality. Small 6(19):2136–2145CrossRef

17.
Ali A, Zafar H, Zia M, Haq IU, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67CrossRef

18.
Fortin JP, Wilhelm C, Servais J, Menager C et al (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635CrossRef

19.
Wu S, Sun A, Zhai F et al (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884CrossRef

20.
ElBayoumi TA, Torchilin VP (2010) Liposomes: methods and protocols, volume 1: pharmaceutical nanocarriers. Method Mol Biol 605:1–86CrossRef

21.
Zhen GL, Muir BW, Moffat BA et al (2011) Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C 115(2):327–334CrossRef

22.
Li XA, Zhang B, Ju CH et al (2011) Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J Phys Chem C 115(25):12350–12357CrossRef

23.
Vikesland PJ, Rebodos RL, Bottero JY, Rose J, Masion A (2016) Aggregation and sedimentation of magnetite nanoparticle clusters. Environ Sci Nano 3(2):567–577CrossRef

24.
Laurent S, Forge D, Port M, Roch Alain et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef

25.
Xu J, Yang H, Fu W et al (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309(2):307–311CrossRef

26.
Xu J, Sun J, Wang Y et al (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecule 19(8):11465–11486CrossRef

27.
Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55CrossRef

28.
Schartl W (2010) Current directions in core–shell nanoparticle design. Nanoscale 2(6):829–843CrossRef

29.
Leung KCF, Xuan SH, Zhu XM, Wang DW et al (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41(5):1911–1928CrossRef

30.
Feng L, Wechsler D, Zhang P (2008) Alloy-structure-dependent electronic behavior and surface properties of Au–Pd Nanoparticles. Chem Phys Lett 461(4–6):254–259

31.
Nalawade P, Mukherjee P, Kapoor S (2014) Triethylamine induced synthesis of silver and bimetallic (Ag/Au) nanoparticles in glycerol and their antibacterial study. J Nanostruct Chem 4(2):113–120CrossRef

32.
Mao JJ, Wang DS, Zhao GF, Jia W, Li YD (2013) Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid–solid–solution synthetic system according to the electronegativity of alloys. Cryst Eng Commun 15(24):4806–4810CrossRef

33.
Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzan LM et al (2013) Size tunable Au@Ag core–shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 29(48):15076–15082CrossRef

34.
Zhang A, Dong CQ, Liu H, Ren JC (2013) Blinking behavior of CdSe/CdS quantum dots controlled by alkylthiols as surface trap modifiers. J Phys Chem C 117(46):24592–24600CrossRef

35.
Vanderkooy A, Chen Y, Gonzaga F, Brook MA (2011) Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation. ACS Appl Mater Interfaces 3(10):3942–3947CrossRef

36.
Haldar KK, Kundu S, Patra A (2014) Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS Appl Mater Interfaces 6(24):21946–21953CrossRef

37.
Dembski S, Milde M, Dyrba M, Schweizer S, Gellermann C, Klockenbring T (2011) Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate: Eu3+ core–shell nanoparticles. Langmuir 27(23):14025–14032CrossRef

38.
Wu LH, Mendoza-Garcia A, Li Q, Sun SH (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512CrossRef

39.
Stefan M, Pana O, Leostean C, Bele C et al (2014) Synthesis and characterization of Fe3O4–TiO2 core–shell Nanoparticles. J Appl Phys 116(11):114312–114322CrossRef

40.
Zeng H, Sun SH (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18(3):391–400CrossRef

41.
Li YT, Liu J, Zhong YJ, Zhang J et al (2011) Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo. Int J Nanomed 6:2805–2819CrossRef

42.
Yu H, Chen M, Rice PM, Wang SX et al (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5(2):379–382CrossRef

43.
Shi WL, Zeng H, Sahoo Y, Ohulchanskyy TY et al (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6(4):875–881CrossRef

44.
Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126(18):5664–5665CrossRef

45.
Gu HW, Yang ZM, Gao JH, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127(1):34–35CrossRef

46.
Stoeva SI, Huo FW, Lee JS et al (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127(44):15362–15363CrossRef

47.
Subramanian V, Wolf EE, Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles. Langmuir 19(2):469–474CrossRef

48.
Ju S, Cai TY, Lu HS, Gong CD (2012) Pressure-induced crystal structure and spin-state transitions in magnetite (Fe3O4). J Am Chem Soc 134(33):13780–13786CrossRef

49.
Yang C, Wu JJ, Hou YL (2011) Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47(18):5130–5141CrossRef

50.
Fernandez-Pacheco A (2011) Studies of nanoconstrictions, nanowires and Fe3O4 thin films: electrical conduction and magnetic properties. Fabrication by focused electron/ion beam. Magnetotransport properties of epitaxial Fe3O4 thin films. Part of the series Springer Theses, pp 51–82. doi:10.​1007/​978-3-642-15801-8
                        

51.
Schrupp D, Sing M, Tsunekawa M, Fujiwara H et al (2005) High-energy photoemission on Fe3O4: small polaron physics and the Verwey transition. Europhys Lett 70(6):789–795CrossRef

52.
Hevroni A, Bapna M, Piotrowski S, Majetich SA, Markovich G (2016) Tracking the Verwey transition in single magnetite nanocrystals by variable-temperature scanning tunneling microscopy. J Phys Chem Lett 7(9):1661–1666CrossRef

53.
Yu QZ, Shi MM, Cheng YN, Wang M, Chen HZ (2008) Fe3O4@Au/polyaniline multifunctional nanocomposites: their preparation and optical, electrical and magnetic properties. Nanotechnology 19(26):265702–265707CrossRef

54.
Ortega D, Pankhurst QA (2013) Magnetic hyperthermia, in nanoscience: volume 1: nanostructures through chemistry. In: Brien PO’ (ed). Royal Society of Chemistry, Cambridge, pp 60–88

55.
Dadashi S, Poursalehi R, Delavari H (2015) Structural and optical properties of pure iron and iron oxide nanoparticles prepared via pulsed Nd: YAG laser ablation in liquid. Procedia Mater Sci 11:722–726CrossRef

56.
Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires. Nanoscale Res Lett 4(9):977–981CrossRef

57.
Bedford EE, Boujday S, Pradier CM, Gu FX (2015) Nanostructured and spiky gold in biomolecule detection: improving binding efficiencies and enhancing optical signals. RSC Adv 5(21):16461–16475CrossRef

58.
Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857CrossRef

59.
Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRef

60.
Lee Y, Garcia MA, Huls NAF, Sun S (2010) Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew Chem 122(7):1293–1296CrossRef

61.
Jiang J, Gu HW, Shao HL, Devlin E et al (2008) Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20(23):4403–4407CrossRef

62.
Guo SJ, Dong SJ, Wang EK (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures. Chem Eur J 15(10):2416–2424CrossRef

63.
Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc 127(11):3928–3934CrossRef

64.
Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P et al (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6(1):73–82CrossRef

65.
Alarfaj NA, El-Tohamy MF (2015) A high throughput gold nanoparticles chemiluminescence detection of opioid receptor antagonist naloxone hydrochloride. Chem Cent J 9:6–14CrossRef

66.
Polshettiwar V, Luque R, Fihri A, Zhu HB et al (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075CrossRef

67.
Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98(18):1331–1334CrossRef

68.
Balzerova A, Fargasova A, Markova Z et al (2014) Magnetically-assisted surface enhanced Raman spectroscopy (MA-SERS) for label-free determination of human immunoglobulin G (IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem 86(22):11107–11114CrossRef

69.
Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070–8101CrossRef

70.
Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384CrossRef

71.
Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46(14):2448–2452CrossRef

72.
Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–8CrossRef

73.
Namvar F, Rahman HS, Mohamad R, Baharara J et al (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomed 19:2479–2488CrossRef

74.
Reddy LH (2005) Drug delivery to tumours: recent strategies. J Pharm Pharmacol 57(10):1231–1242CrossRef

75.
Jin HZ, Kang KA (2008) Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthemic treatment for breast cancer. Chapter: oxygen transport to tissue XXVIII. Adv Exp Med Biol 599:45–52CrossRef

76.
Wang LY, Bai JW, Li YJ, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Ed 47(13):2439–2442CrossRef

77.
Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699CrossRef




OEBPS/A13065_2017_288_Fig1_HTML.gif
JEEE
[yt

(@)

® humanlgG © 1gGB Y antibody + Ramanlabel @) Fe,05/AuNPs
@ AuNPS 7 substrate





OEBPS/A13065_2017_288_Article_IEq1.gif
Fe;0sAuAg, ({x, y) = {0,1})





OEBPS/sidebar.gif





OEBPS/A13065_2017_288_Fig4_HTML.gif
o4
Fe,0,=Fe¥'Fe?'Fe*0,

——

A B

sites  sites
INVERSE SPINEL STRUCTURE

Double

b exchange (FM)
B [t |ttt m?? Tt
Fe®*(ds) / Fe?" (d°)
125°-uperoxchange @O O 125" Superoxchango
(AF) (AF)
A A Ra kAR
Fe*(d5)






OEBPS/cc-by.png
() _®





OEBPS/A13065_2017_288_Article_Equ2.gif
3Fe(OH); — Fe;04 + Hay + 2H,0





OEBPS/contact.gif





OEBPS/A13065_2017_288_Article_IEq2.gif
Fd3im





OEBPS/A13065_2017_288_Article_Equ1.gif
Fe™ + 2Fe™ + 80H™ — Fe;0, + 4H,0





OEBPS/A13065_2017_288_Fig3_HTML.gif
Three-layer magnetic
‘nanoparticle

nanopartiles °
stop 1

o e
2| 13nmau
@ 4 nanoparticles
HAucl,
reduction
Step3






OEBPS/A13065_2017_288_Fig5_HTML.jpg





OEBPS/A13065_2017_288_Fig6_HTML.gif
'TEM image of nanocomposite
1. 8lood sample i
deposited on a glass
platform

T ey
L —OL separated and analyzed
U using MA-SERS
g6

o+ Fe,0,@Ag@Streptavidin@AntilgG nanocomposite






OEBPS/A13065_2017_288_Fig2_HTML.gif
© seed nanoparticute

\rorgam'c makeup agent
© sl particie agent

d Schematic electron cloud or deficiency

Reduction






