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Abstract
Background
Purine nucleoside analogs (PNAs) constitute an important group of cytotoxic drugs for the treatment of neoplastic and autoimmune diseases. In the present study, classification models have been developed for the prediction of the anti-HIV activity of purine nucleoside analogs.

Results
The topochemical version of superaugmented pendentic index-4 has been proposed and successfully utilized for the development of models. A total of 60 2D and 3D molecular descriptors (MDs) of diverse nature were selected for building the classification models using decision tree (DT), random forest (RF), support vector machine (SVM), and moving average analysis (MAA). The values of most of these descriptors for each of the analogs in the dataset were computed using the Dragon software (version 5.3). An in-house computer program was also employed to calculate additional MDs which were not included in the Dragon software. DT, RF, and SVM correctly classified the analogs into actives and inactives with an accuracy of 89 %, 83 %, and 78 %, respectively. MAA-based models predicted the anti-HIV activity of purine nucleoside analogs with a non-error rate up to 98 %. Therapeutic active spans of the suggested MAA-based models not only showed more potency but also exhibited enhanced safety as revealed by comparatively high values of selectivity index (SI). The statistical importance of the developed models was appraised via intercorrelation analysis, specificity, sensitivity, non-error rate, and Matthews correlation coefficient.

Conclusions
High predictability of the proposed models clearly indicates an immense potential for developing lead molecules for potent but safe anti-HIV purine nucleoside analogs.
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Background
The drug design and development process involves the use of a variety of computational techniques, such as (quantitative) structure-activity relationships [(Q)SAR], molecular mechanics, quantum mechanics, molecular dynamics, and drug-receptor docking [1, 2]. (Q)SAR studies are based on the premise that biological response is a function of the chemical structure [3, 4]. (Q)SAR models reveal a relationship between the structural characteristics of the compounds and their biological activity or environmental behavior [5, 6]. (Q)SAR models predict chemical behavior and simulate adverse effects in laboratory animals, tissues, and cells directly from the chemical structure. This will naturally minimize the need to conduct animal tests so as to comply with the regulatory requirements for human health and eco-toxicology endpoints [7, 8]. The main hypothesis in (Q)SAR is that similar chemicals have similar properties, and even a minor structural change(s) will result in a change in property value(s) [9]. SAR represents classification models that are used when an empirical property is characterized in a (+1/−1) manner, such as soluble/insoluble, active/inactive, toxic/non-toxic, permeable/impermeable, inhibitor/non-inhibitor, ligand/non-ligand, substrate/non-substrate, mutagen/non-mutagen, polar/non-polar, or carcinogen/non-carcinogen [10–15]. In silico screening constitutes a vital cost-effective high-throughput process for providing a rapid indication of potential hazards for use in lead prioritization [16].
Machine learning (ML) constitutes a vital area of artificial intelligence (AI) in which models are simply generated by extracting rules and functions from relatively large datasets. ML comprises diverse methods and algorithms such as decision trees, general CHAID models, k-nearest neighbors, random forests, Bayesian methods, Gaussian processes, artificial neural networks (ANN), artificial immune systems, kernel algorithms, and support vector machines (SVMs). ML algorithms extract relevant information from empirical dataset through computational/statistical techniques and generate a set of rules, functions, or procedures that allow them to predict the properties of novel objects which have not been included in the learning set. (Q)SAR models derived through ML algorithms are subsequently applied during the drug development process so as to optimize the therapeutic activity, target selectivity, and related physico-chemical and biological properties of the selected molecules [10, 17, 18]. The advantage of AI approaches is that they can be easily applied to learn from examples and to evolve suitable prophesy models in spite of the limited understanding of the underlying molecular processes. The AI approach is also beneficial whenever computational simulations based on fundamental physical models are too expensive to perform [19, 20].
AIDS is one of the most urgent global health problems and is the leading cause of death in Africa and the fourth leading cause of death across the world. Highly active antiretroviral therapy (HAART) has gained considerable success in Western countries. The anti-HIV drug evolution process resembles a crystal ball and involves a plenty of astonishment, expectations, and disappointments. Unfortunately, we continue to be dependent on the predictions of the crystal ball. All of the currently available anti-HIV drugs are far from ideal, and we still face problems of acute and chronic side effects, patient compliance issues, drug resistance, cost, and potency. Hopes of long-term management and eradication depend on increasing available therapeutic options [21, 22].
Purine nucleoside analogs (PNAs) constitute an important group of cytotoxic drugs for the treatment of neoplastic and autoimmune diseases [23]. 9-[4-α-(Hydroxymethyl)cyclopent-2-ene-1-α-yl]guanine (CBV), (−)-β-D-(2R,4R)-1,3-dioxolane-guanosine (DXZ), 3′-azido-3′deoxy-guanosine (AZG), and 2′-C-methylguanosine are all known for their reverse transcriptase inhibiting activity [24]. 3,9-Dihydro-9-dioxo-5H-imidazo(1,2-A) purine nucleosides synthesized from these nucleosides have shown improved anti-HIV activity [25].
In the present study, models of diverse nature have been developed through decision tree (DT), random forest (RF), support vector machine (SVM), and moving average analysis (MAA) using molecular descriptors (MDs) as independent variables for the prediction of the anti-HIV activity of purine nucleoside analogs in human peripheral blood mononuclear (PBM) cells.

Methods
Dataset
A dataset comprising 36 purine nucleoside analogs was selected for the present investigation (Fig. 1 and Table 1). The anti-HIV activity of these analogs in human PBM cells has been reported in terms of EC50 (effective concentration against 50 % of cell population) by Amblard et al. [25]. The nucleoside analog DXZ possessing an EC50 value of 0.51 μM is well known for its anti-HIV activity. DXZ was considered as a reference compound [24]. Accordingly, analogs possessing EC50 values of ≤0.51 μM were considered to be active and analogs possessing EC50 values of >0.51 μM were considered to be inactive for the purpose of the present study.[image: A13065_2015_109_Fig1_HTML.gif]
Fig. 1Basic structures of purine nucleoside analogs from serial number 1 to 36 [25]




                  Table 1Relationship between molecular descriptors and anti-HIV activity in human PBM cells


	Serial number
	Basic structure of compound
	Substituent (R)
	A2
	A4
	A23
	A37
	Anti-HIV activity in human PBM cells (EC50)

	Predicted
	Reported [25]

	A2
	A4
	A23
	A37
	 
	1
	I
	3-[4-(Hydroxymethyl)-2-cyclopent-1-yl]
	0.919
	3.287
	9.61
	2.16
	+
	+
	±
	−
	+

	2
	I
	3-(β-D-1,3-Dioxolanyl)
	0.922
	3.1
	9.982
	2.254
	+
	+
	±
	−
	+

	3
	I
	3-(3-Azido-2,3-dideoxy-β-D-erythro-pentofuranosyl)
	0.903
	4.599
	50.599
	2.197
	+
	+
	+
	−
	+

	4
	I
	3-(β-D-2-C-Methyl-ribofuranosyl)
	0.848
	0.001
	615.521
	2.332
	−
	−
	−
	−
	−

	5
	II
	4-MeO-Ph
	0.973
	11.666
	4.866
	1.596
	−
	−
	−
	−
	−

	6
	II
	4-Me-Ph
	0.972
	11.15
	5.338
	1.614
	−
	−
	−
	−
	−

	7
	II
	4-Br-Ph
	0.97
	11.545
	3.883
	1.631
	−
	−
	−
	−
	−

	8
	II
	4-NEt2-Ph
	0.976
	14.051
	43.583
	1.531
	−
	−
	+
	+
	+

	9
	II
	4-NMe2-Ph
	0.976
	12.597
	43.44
	1.573
	−
	−
	+
	+
	+

	10
	II
	2-Thiophenyl
	0.968
	9.999
	5.937
	1.655
	−
	−
	−
	−
	−

	11
	II
	3-Thiophenyl
	0.969
	10.637
	5.223
	1.641
	−
	−
	−
	−
	−

	12
	III
	Et
	0.945
	6.157
	7.307
	1.938
	−
	−
	−
	−
	−

	13
	III
	Ph
	0.971
	9.869
	2.313
	1.674
	−
	−
	−
	−
	−

	14
	III
	4-MeO-Ph
	0.974
	11.602
	4.849
	1.627
	−
	−
	−
	−
	−

	15
	III
	3-MeO-Ph
	0.974
	10.545
	5.38
	1.652
	−
	−
	−
	−
	−

	16
	III
	2-MeO-Ph
	0.97
	9.834
	6.121
	1.678
	−
	−
	−
	−
	−

	17
	III
	4-Me-Ph
	0.973
	11.081
	5.436
	1.648
	−
	−
	−
	−
	−

	18
	III
	4-Cl-Ph
	0.971
	11.307
	4.712
	1.661
	−
	−
	−
	−
	−

	19
	III
	4-F-Ph
	0.971
	10.929
	5.132
	1.655
	−
	−
	−
	−
	−

	20
	III
	2,4-F-Ph
	0.971
	10.969
	35.94
	1.672
	−
	−
	±
	−
	−

	21
	III
	4-NEt2-Ph
	0.974
	13.458
	44.566
	1.555
	−
	−
	+
	+
	+

	22
	III
	4-NMe2-Ph
	0.976
	12.544
	44.599
	1.601
	−
	−
	+
	−
	−

	23
	III
	2-Thiophenyl
	0.969
	9.92
	6.049
	1.69
	−
	−
	−
	−
	−

	24
	III
	3-Thiophenyl
	0.97
	9.951
	5.261
	1.675
	−
	−
	−
	−
	−

	25
	III
	4-N3-Ph
	0.961
	12.091
	4.532
	1.611
	−
	−
	−
	−
	−

	26
	III
	4-CN-Ph
	0.975
	12.57
	4.893
	1.626
	−
	−
	−
	−
	−

	27
	IV
	Ph
	0.939
	0.566
	6.494
	1.645
	−
	−
	−
	−
	−

	28
	IV
	4-MeO-Ph
	0.889
	1.923
	39.143
	1.609
	−
	−
	±
	−
	−

	29
	IV
	4-NEt2-Ph
	0.907
	4.048
	357.424
	1.551
	+
	+
	+
	+
	+

	30
	IV
	4-NMe2-Ph
	0.901
	2.76
	344.712
	1.589
	+
	+
	+
	+
	+

	31
	V
	Et
	0.878
	0.018
	993.843
	1.986
	−
	−
	−
	−
	−

	32
	V
	4-MeO-Ph
	0.937
	0.982
	1972.793
	1.663
	−
	−
	−
	−
	−

	33
	V
	4-NEt2-Ph
	2.345
	0.94
	16,083.229
	1.594
	−
	−
	−
	−
	−

	34
	V
	4-NMe2-Ph
	0.983
	0.939
	12,785.121
	1.639
	−
	−
	−
	−
	−

	35
	V
	2-Thiophenyl
	0.123
	0.923
	2081.689
	1.72
	−
	−
	−
	−
	−

	36
	V
	3-Thiophenyl
	0.122
	0.923
	2059.054
	1.706
	−
	−
	−
	−
	−


+, active; −, inactive; ±, transitional



                

Molecular descriptors
The MDs used in the current study include constitutional, physico-chemical, topostructural, topochemical, and topological charge indices, walk and path counts, information-based indices, and a wide variety of 3D descriptors. The majority of 2D and 3D MDs utilized in the present study were calculated using the Dragon software (version 5.3). Most of these MDs are reviewed in the textbook by Todeschini and Consonni [26]. An in-house computer program was also employed to calculate MDs which were not included in the Dragon software. Initially, MDs with significant degenerate values were omitted from the large pool of MDs calculated through both the Dragon software and the in-house computer program. For the remaining MDs, a pairwise correlation analysis was carried out (one of any two indices with r ≥ 0.90 was excluded to minimize redundant information). The abovementioned exclusion technique was utilized to decrease the correlation and collinearity between MDs. Finally, 60 MDs, enlisted in Table 2, were short-listed for the development of models.Table 2List of molecular descriptors


	Code
	Name of descriptor

	A1
	Eccentricity index, ECC

	A2
	Spherocity index, SPH

	A3
	Molecular connectivity topochemical index, χ
                              
                                A
                              
                            

	A4
	Shape profile no. 20, SP20

	A5
	Shape profile no. 07, SP07

	A6
	Shape profile no. 08, SP08

	A7
	Eccentric adjacency topochemical index

	A8
	Radial distribution function - 10.5/weighted by atomic masses, RDF105m

	A9
	Second Zagreb index M2, ZM2

	A10
	Augmented eccentric connectivity topochemical index, 
                                A
                              
                              ξ
                              
                                c
                              
                            

	A11
	Mean information content on the distance magnitude, IDM

	A12
	Molecular profile no. 10, DP10

	A13
	Molecular profile no. 11, DP11

	A14
	Molecular profile no. 12, DP12

	A15
	Molecular profile no. 13, DP13

	A16
	Molecular profile no. 14, DP14

	A17
	Radius of gyration (mass weighted), RGyr

	A18
	Eccentric connectivity topochemical index, ξ
                              
                                c
                              
                            

	A19
	Connective eccentricity topochemical index, C
                              
                                ξ
                              
                            

	A20
	Average vertex distance degree, VDA

	A21
	Mean square distance index (Balaban), MSD

	A22
	Schultz molecular topological index, SMTI

	A23
	Superaugmented pendentic topochemical index-4, 
                                SA
                              
                              ∫
                              
                                P-4c
                              
                            

	A24
	Gutman MTI by valence vertex degrees, GMTIV

	A25
	Xu index, Xu

	A26
	Mean Wiener index, WA

	A27
	Superadjacency topochemical index, ∫
                              
                                AC
                              (G)

	A28
	Harary H index, Har

	A29
	Quasi-Wiener index (Kirchhoff number), QW

	A30
	First Mohar index, TI1

	A31
	Weiner’s topochemical index, W
                              
                                c
                              
                            

	A32
	Reciprocal hyper-detour index, Rww

	A33
	Distance/detour index, D/D

	A34
	All-path Wiener index, Wap

	A35
	Superaugmented eccentric connectivity topochemical index-3, 
                                SAc
                              
                              ξ
                              
                                c
                              
                              3
                            

	A36
	Wiener-type index from Z-weighted distance matrix (Barysz matrix), WhetZ

	A37
	Balaban-type index from Z-weighted distance matrix (Barysz matrix), JhetZ

	A38
	Maximal electrotopological negative variation, MAXDN

	A39
	Molecular electrotopological variation, DELS

	A40
	Superaugmented eccentric connectivity topochemical index-4, 
                                SAc
                              
                              ξ
                              
                                c
                              
                              4
                            

	A41
	Three-path Kier alpha-modified shape index, S3K

	A42
	Centralization, CENT

	A43
	Distance/detour ring index of order 9, D/Dr09

	A44
	Molecular connectivity index, χ
                            

	A45
	Eigenvalue 11 from edge adjacency matrix weighted by resonance integrals, EEig11r

	A46
	Average geometric distance degree, AGDD

	A47
	Absolute eigenvalue sum on geometry matrix, SEig

	A48
	Eccentric adjacency index, ξ
                              
                                Α
                              
                            

	A49
	3D-MoRSE - signal 26/unweighted, Mor26u

	A50
	3D-MoRSE - signal 25/weighted by atomic Sanderson electronegativities, Mor25e

	A51
	Augmented eccentric connectivity index, 
                                A
                              
                              ξ
                              
                                c
                              
                            

	A52
	First component size directional WHIM index/unweighted, L1u

	A53
	K global shape index/weighted by atomic Sanderson electronegativities, Ke

	A54
	Superpendentic index, ∫P
                            

	A55
	Mean information content on the leverage magnitude, HIC

	A56
	
                              H total index/weighted by atomic van der Waals volumes, HTv

	A57
	
                              R maximal autocorrelation of lag 1/weighted by atomic Sanderson electronegativities, R1e+

	A58
	
                              R total index/weighted by atomic polarizabilities, RTp

	A59
	Superaugmented eccentric connectivity index-1, 
                                SA
                              
                              ξ
                              
                                c
                              
                              1
                            

	A60
	Weiner’s index, W
                            


Most of the Dragon descriptors are largely defined in ref. [26]



                

Statistical methods
Decision tree
DT is a common method that provides both classification and predictive functions simultaneously. A single DT was grown for the prediction of anti-HIV activity and to identify the importance of various MDs used for the present study. A cutoff value dividing the compounds of the dataset into active and inactive with regard to anti-HIV activity was assigned to each MD for every compound. Then, a single MD is identified that split the entire training set into two or more homogenous subsets and shows the lowest possible false assignment before being chosen as parent node. The molecules at each parent node are classified, based on the MD value, into two child nodes, and the resulting child nodes or subsets are split into sub-subsets, generally using different MDs. The majority vote of the molecules reaching the same terminal node in the training set decides the prediction for a molecule to reach a given terminal node. In this manner, DT created an interactive branching topology in which the branch taken at each intersection is determined by a rule related to a MD of the molecule, and lastly, each terminating leaf of the tree is assigned to a particular category, i.e., A (active) or B (inactive) [27–30]. In the present study, RPART library was added in R program (version 2.10.1) to grow DT.

Random forest
RF is a well-known ensemble of unpruned trees generated through the systematic use of bootstrap samples of the training data for building forests (multiple trees) and random subsets of variables to facilitate the best possible bifurcation at each node [31, 32]. In the present study, the RFs were grown with the R program (version 2.10.1) using the random forest library.

Support vector machine
SVM is a relatively new classification technique. SVM involves drawing a boundary between groups of samples that fall into different classes. The SVM methodology comprised reducing the pool of 30 descriptors to a smaller size by eliminating the related variables, followed by development of classification models [33, 34]. Statistica v. 7.0 was used for the generation of SVM models. The classification models were generated using the training set of compounds followed by the validation of the best model using the test set of compounds [35]. Every third compound of the dataset was included in the test set. SVM model validity was also checked by cross-validation, i.e., leave-one-out method. SVM models were also validated by tenfold cross-validation. The kernel type that was adopted in the present work was the polynomial function. The first task was the assignment of each molecule to one class, namely ‘actives’ or ‘inactives’ based on the cutoff value (EC50 = 0.51 μM) of the reference compound.

Moving average analysis
MAA was utilized so as to facilitate the construction of single MD-based models for predicting the anti-HIV activity of purine nucleoside analogs. For the selection and evaluation of range-specific characteristics, exclusive activity ranges were determined from the frequency distribution of therapeutic response level. This was accomplished by initially plotting the relationship between index values and anti-HIV activity and subsequently identifying the active range by scrutinizing the resultant data by maximization of moving average with regard to active purine nucleoside analogs (<35 % = inactive, 35 % to 65 % = transitional, and >65 % = active) [36]. Biological activity was assigned to each analog involved in the dataset, which was subsequently compared with the reported anti-HIV activity (Table 1). Average values of EC50 and selectivity index (SI) were calculated for each range of the proposed models.

Model validation
DT-based models were validated using the tenfold cross-validation (CV) method [37]. The performance of the proposed models was evaluated by calculating the overall accuracy of prediction, sensitivity, specificity, non-error rate (arithmetic mean of sensitivity and specificity) [38, 39], and Matthews correlation coefficient (MCC) [40]. MCC is generally regarded as being one of the best statistical techniques which account for both over- and underprediction. MCC takes both sensitivity and specificity into account, and its value ranges from −1 to +1. Higher values of MCC indicate better predictions [41, 42]. The statistical importance of MDs used in building predictive models was also appraised by intercorrelation analysis. The degree of correlation was appraised by Spearman’s rank correlation coefficient ‘r’. Pairs of MDs with r ≥ 0.97 are considered to be highly inter-correlated while those with 0.68 ≤ r ≤ 0.97 to be appreciably correlated; MDs with 0.36 ≤ r ≤ 0.67 are weakly correlated whereas the pairs of MDs with low r values (<0.35) are not inter-correlated [43, 44].



Results and discussion
AIDS is the fourth leading cause of death worldwide. Inhibition of the human immunodeficiency virus and sustained suppression of viral replication reduce morbidity and prolong life in patients with HIV infection. This virus is therefore a major target for the structure-based inhibitors design.
Finding that the structure of a molecule has an important role in its therapeutic activity coupled with the need for safer potent drugs to be developed with minimum animal sacrifice, expenditure, and time loss has led to the origin of structure-activity relationship (SAR) studies [45]. The inherent problem in the development of a suitable correlation between chemical structures and biological activity can be attributed to the non-quantitative nature of chemical structures. MDs translate chemical structures into characteristic numerals and facilitate (Q)SAR studies [46, 47].
In the present study, the relationship between anti-HIV activity and the structure of purine nucleoside analogs has been investigated and suitable models developed using diverse classification techniques, i.e., DT, RF, SVM, and MAA. DT was built from a set of 60 MDs enlisted in Table 2. The MD at the originating node is the most significant, and the significance of MD decreases with the gradual increase in the tree height [27–30]. The classification of purine nucleoside analogs as inactive and active using a single tree, based on the Balaban-type index from Z-weighted distance matrix, A37, JhetZ index, and mean information content on the distance magnitude, A11, IDM index, has been depicted in Fig. 2. The DT identified the Balaban-type index from Z-weighted distance matrix, A37, JhetZ index, as the most important index.[image: A13065_2015_109_Fig2_HTML.gif]
Fig. 2A decision tree for distinguishing active purine nucleoside analogs (A) from inactive analogs (B)




              
A37, i.e., the Balaban-type index from Z-weighted distance matrix, JhetZ index, is based on the Barysz matrix and was developed by Barysz et al. It may be expressed as per the following:[image: $$ {J}_{\mathrm{B}}=\frac{q}{\left(\mu +1\right)}{\displaystyle {\sum}_{edges}^G\left(\frac{1}{\sqrt{S_i{S}_j}}\right)} $$]



              
where S
                
                  i
                
                S
                
                  j
                 represents the product of the distance sums of the adjacent pairs of vertices i and j in a graph G. The cycloatomic number of the graph is represented by μ, and it indicates the number of independent cycles in the graph [48, 49].
The DT classified the analogs with an accuracy of >99.9 % in the training set. The sensitivity, specificity, non-error rate, overall accuracy of prediction, and MCC of the tenfold cross-validated set was of the order of 75 %, 93 %, 84 %, 89 %, and 0.68, respectively (Table 3). A high value of MCC simply indicates the robustness of the proposed DT-based model.Table 3Confusion matrix for anti-HIV activity of purine nucleoside analogs in human PBM cells


	Model
	Description
	Ranges
	Number of compounds predicted
	Sensitivity (%)
	Specificity (%)
	Non-error rate (%)
	Overall accuracy of prediction (%)
	MCC

	Active
	Inactive

	Decision tree
	Training set
	Active
	08
	00
	100
	100
	100
	>99.9
	1.00

	Inactive
	00
	28

	Tenfold cross-validated set
	Active
	06
	02
	75
	93
	84
	89
	0.68

	Inactive
	02
	26

	Random forest
	 	Active
	05
	03
	62.5
	89
	75.7
	83
	0.52

	Inactive
	03
	25

	Support vector machine
	Training set
	Active
	04
	02
	66.7
	100
	83.3
	93
	0.78

	Inactive
	00
	21

	Test set
	Active
	01
	01
	50
	86
	68
	78
	0.36

	Inactive
	01
	06


The recognition rate of decision tree-, random forest-, and support vector machine-based models is also shown



              
A11, i.e., mean information content on the distance magnitude, IDM index, is one of the information indices reported by Bonchev et al. It may be expressed as per the following:[image: $$ {\overline{\mathrm{I}}}_D^W=-{\displaystyle {\sum}_{n=1}^G\left({k}_n\frac{n}{W}{ \log}_2\frac{n}{W}\right)} $$]



              
where W is the Wiener index, k
                
                  n
                 is the number of distances of equal n value in the triangular submatrix D, and G is the maximum distance value [50].
The RFs were grown utilizing 60 MDs as enlisted in Table 1. The RF classified purine nucleoside analogs with regard to anti-HIV activity with an accuracy of 83 % and the out-of-bag (OOB) estimate of error was 17 %. The sensitivity, specificity, non-error rate, accuracy of prediction, and MCC value of the RF-based model for the tenfold cross-validated set were found to be 62.5 %, 89 %, 75.7 %, 83 %, and 0.52, respectively (Table 3). A high value of MCC simply indicates the robustness of the proposed RF-based model.
SVM-based classification models were built utilizing a small pool of topological descriptors as specified in the Methods section. The dataset was divided into a training and a test set based on a random test set selection comprising 27 compounds in the training and 9 compounds in the test set, respectively. The models were built using the training set molecules and subsequently validated by test set molecules. The SVM model for the training set resulted in a specificity of 100 % and an accuracy of prediction of 93 %. The sensitivity, specificity, non-error rate, overall accuracy of prediction, and MCC of the test set was of the order of 50 %, 86 %, 68 %, 78 %, and 0.36, respectively (Table 3).
Four single index-based models were developed using MAA (Table 4). The Balaban-type index from Z-weighted distance matrix: index A37, identified as the most important index by the decision tree, was used to construct a model for the prediction of the anti-HIV activity of purine nucleoside analogs. Three more indices, i.e., spherocity index, SPH, A2; shape profile no. 20, SP20, A4; and superaugmented pendentic topochemical index-4, 
                  SA
                
                ∫
                
                  P-4c
                , A23, were also used to develop the models for predicting the anti-HIV activity of purine nucleoside analogs.Table 4Proposed MAA models for the prediction of anti-HIV activity of PNAs in human PBM cells


	Descriptor
	Nature of range in the proposed model
	Descriptor value
	Number of compounds in each range
	Sensitivity (%)
	Specificity (%)
	Non-error rate (%)
	Overall accuracy of prediction (%)
	MCC
	Average EC50 (μM) of correctly predicted compounds in each range
	Average SI of correctly predicted compounds in each range

	Total
	Correctly predicted

	A2
	Lower inactive
	<0.901
	3
	3
	63
	100
	81.5
	91.7
	0.75
	67.1
	15.205

	Active
	0.901 to 0.922
	5
	5
	0.182
	825.741

	Upper inactive
	>0.922
	28
	25
	33.613
	66.665

	A4
	Lower inactive
	<2.76
	9
	9
	63
	100
	81.5
	91.7
	0.75
	78.855
	6.544

	Active
	2.76 to 4.599
	5
	5
	0.182
	825.741

	Upper inactive
	>4.599
	22
	19
	17.47
	43.186

	A23
	Lower inactive
	<9.61
	18
	18
	100
	96
	98
	96.9
	0.91
	18.056
	36.560

	Transitional
	9.61 to 43.43
	4
	NA
	4.138
	102.32

	Active
	43.44 to 357.424
	7
	6
	0.141
	859.542

	Upper inactive
	>357.424
	7
	7
	100
	100

	A37
	Active
	1.531 to 1.589
	5
	5
	63
	100
	81.5
	91.7
	0.75
	0.134
	920.339

	Inactive
	>1.589
	24
	21
	37.201
	31.408



                      NA not applicable



              
A2, i.e., spherocity index, SPH, is one of the geometrical descriptors given by Robinson et al. and may be expressed as:[image: $$ {\varOmega}_{\mathrm{SPH}}=\frac{3{\lambda}_3}{\left({\lambda}_1+{\lambda}_2+{\lambda}_3\right)}\kern2em 1\ge {\varOmega}_{\mathrm{SPH}}\kern0.5em \ge \kern0.5em 0 $$]



              
where λ
                1, λ
                2, and λ
                3 are the eigenvalues of the auto-covarience matrix used in the principal component analysis of the molecule. The ΩSPH value ranges from unity for totally spherical molecules to zero for totally flat molecules [51].
A4, i.e., shape profile no. 20, SP20, is one of the Randic molecular profiles described by Randic and may be expressed as:[image: $$ S=N+{}^1Rx+{}^2R/2!{x}^2+{\kern0.5em }^3R/3!{x}^3+\kern0.5em {}^4R/4!{x}^4 \dots \kern1em \dots \kern0.5em {}^nR/n!{x}^n $$]



                [image: $$ S={}^1S,\kern0.5em {}^2S,\kern0.5em {}^3S,\kern0.5em {}^4S \dots \kern1em  \dots {}^nS $$]



              
where N is a constant indicating the size of the system. 1
                R, 2
                R, 3
                R… are the averages of the row sums in the 1
                D, 2
                D, 3
                D… matrix, respectively. D is the geometry distance matrix of a structure [52].
A23, i.e., superaugmented pendentic topochemical index-4, is the topochemical version of the topological descriptor (superaugmented pendentic index-4) reported by Dureja et al. [53]. Superaugmented pendentic index-4 is expressed as:[image: $$ {}^{SA}{\displaystyle {\int}^{P-4}}\left({G}_{k,n}\right)={\displaystyle {\sum}_{i=1}^n\frac{p_i{m}_i}{e_i^4}} $$]



              
Superaugmented pendentic topochemical index-4 may be defined as the summation of the quotients of the product of all the non-zero row elements in the chemical pendent matrix and product of chemical adjacent vertex degrees and the fourth power of the chemical eccentricity of the concerned vertex for all vertices in a hydrogen-suppressed chemical molecular graph and may be expressed as:[image: $$ {}^{SA}{\displaystyle {\int}^{P-4}}{\left({G}_{k,n}\right)}^c={\displaystyle {\sum}_{i=1}^n\frac{p_{ic}{m}_{ic}}{e_{ic}^4}} $$]



              
where p
                
                  ic
                 is the chemical pendenticity and is obtained by multiplying all the non-zero row elements in the chemical pendent matrix, ∆Pc, of a chemical graph (G
                
                  k,
                n)c. ∆Pc is a sub-matrix of the chemical distance matrix and is obtained by retaining the columns corresponding to pendent vertices. m
                
                  ic
                 is the augmented chemical adjacency and is defined as the product of chemical degrees of all the vertices v
                
                  j
                 adjacent to vertex v
                
                  i
                . e
                
                  ic
                 is the chemical eccentricity of vertex v
                
                  i
                , and n is the number of vertices in graph G [54–56].
The results of the intercorrelation analysis (Table 5) reveal that the pairs A2:A23 and A23:A37 were not correlated while the pairs A4:A23, A4:A37, and A2:A37 were found to be weakly correlated. The accuracy of prediction for all the four MAA-based models varies from 91.7 to 96.9 %, indicating high predictability (Table 4).Table 5Intercorrelation matrix


	 	A2
	A4
	A23
	A37

	A2
	1.00
	0.85
	−0.13
	−0.62

	A4
	 	1.00
	−0.39
	−0.47

	A23
	 	 	1.00
	−0.11

	A37
	 	 	 	1.00




              
The average EC50 value of the correctly predicted analogs in the active ranges in MAA-based models varied from 0.134 to 0.182 μM. Such a low average EC50 value signifies high potency of the active ranges (Fig. 3).[image: A13065_2015_109_Fig3_HTML.gif]
Fig. 3Average EC50 of anti-HIV activity of correctly predicted PNAs in various ranges of MAA-based models




              
Drug safety evaluation is the key part of drug discovery and development process to identify those that have an appropriately balanced safety-efficacy profile for a given indication [57]. The therapeutic index (TI), certain safety factor (CSF), protective index (PI), therapeutic window (TW), and selectivity index (SI) are some of such important parameters that can be used to achieve this balance. TI may be defined as the ratio of LD50/ED50, where LD50 is defined as the single dose of a therapeutic agent that can be likely to cause death in 50 % of the animal population and ED50 is defined as the single dose of a therapeutic agent that can be likely to cause a particular effect to occur in 50 % of the animal population [58–60]. Similarly, SI is calculated for a drug molecule in the case of cell studies, and it may be defined as the ratio of CC50 to EC50, where CC50 and EC50 represent cytotoxic and effective concentrations, respectively. It is an indirect measure of the safety of a drug. A high value of SI simply indicates low toxicity and more safety. A high value of SI is a desirable property for any drug candidate so as to minimize toxicity. Therefore, such safety parameters should be determined in the initial stages of the drug discovery process to avoid much costlier late-stage failures [61]. Active ranges of the proposed MAA-based models exhibited high degree of selectivity towards infected human PBM cells as indicated by a greater value of SI for active ranges compared to inactive ranges (Fig. 4). As a consequence, active ranges identified by MAA models have both the desired requirements of a drug molecule, i.e., high potency and safety. Model validation by confusion matrix shows the sensitivity of the models of the order of 63 % to 100 % (Table 4). High values of MCC simply indicate the robustness of the proposed MAA-based models.[image: A13065_2015_109_Fig4_HTML.gif]
Fig. 4Average SI against PBM cells of correctly predicted PNAs in various ranges of MAA-based models




              
The present modeling studies may be of great utility for providing lead molecules through exploitation of active ranges in single MD-based models. The proposed models are unique and differ widely from conventional QSAR models. Both systems of modeling have their advantages and limitations. In the instant modeling, the system adopted has a distinct advantage of identification of narrow active ranges, which may be erroneously skipped during regression analysis in conventional QSAR. Since the ultimate goal of modeling is to provide lead structures, therefore, active ranges of the proposed models can play a vital role in providing lead structures [62]. Therefore, active ranges of the proposed models can naturally play a vital role in providing lead structures.

Conclusions
Diverse techniques such as DT, RF, SVM, and MAA were successfully used to develop models for anti-HIV purine nucleoside analogs. Models based on DT, RF, and SVM statistical approaches show an accuracy of prediction up to the order of 89 %. The overall accuracy of prediction of MAA-based models varies from 91.7 % to 96.9 % with regard to the anti-HIV activity of purine nucleoside analogs in human PBM cells. High values of sensitivity, specificity, and MCC indicate the robustness of the proposed models. Good predictability, high potency, and safety of the active ranges in the proposed MAA-based models will naturally provide ease in furnishing lead structures for the development of potent but safe anti-HIV purine nucleoside analogs.
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