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Abstract 

The COVID‑19 pandemic, caused by the SARS‑CoV‑2 virus, has led to over six million deaths worldwide. In human 
immune system, the type 1 interferon (IFN) pathway plays a crucial role in fighting viral infections. However, the ORF8 
protein of the virus evade the immune system by interacting with IRF3, hindering its nuclear translocation and con‑
sequently downregulate the type I IFN signaling pathway. To block the binding of ORF8–IRF3 and inhibit viral 
pathogenesis a quick discovery of an inhibitor molecule is needed. Therefore, in the present study, the interface 
between the ORF8 and IRF3 was targeted on a high‑affinity carbon nanotube by using computational tools. After 
analysis of 62 carbon nanotubes by multiple docking with the induced fit model, the top five compounds with high 
docking scores of − 7.94 kcal/mol, − 7.92 kcal/mol, − 7.28 kcal/mol, − 7.19 kcal/mol and − 7.09 kcal/mol (top hit1‑5) 
were found to have inhibitory activity against the ORF8–IRF3 complex. Molecular dynamics analysis of the complexes 
revealed the high compactness of residues, stable binding, and strong hydrogen binding network among the ORF8‑
nanotubes complexes. Moreover, the total binding free energy for top hit1‑5 was calculated to be − 43.21 ± 0.90 kcal/
mol, − 41.17 ± 0.99 kcal/mol, − 48.85 ± 0.62 kcal/mol, − 43.49 ± 0.77 kcal/mol, and − 31.18 ± 0.78 kcal/mol respectively. 
These results strongly suggest that the identified top five nanotubes (hit1‑5) possess significant potential for advanc‑
ing and exploring innovative drug therapies. This underscores their suitability for subsequent in vivo and in vitro 
experiments, marking them as promising candidates worthy of further investigation.
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Introduction
The current COVID-19 pandemic, caused by SARS-
CoV-2, is genetically connected to the SARS-CoV virus 
responsible for severe acute respiratory syndrome in 
2002–2003, as well as other SARS-related viruses found 
in bats [1]. SARS-CoV-2’s proteome consists of 12 dis-
tinct ORFs (open reading frames), which give rise to four 
structural proteins and twenty-two non-structural pro-
teins [2]. Among the structural proteins are the nucle-
ocapsid (N), membrane (M), envelope (E), and spike (S), 
while the non-structural proteins are encoded by ORF1ab 
and six accessory proteins (ORF3a, ORF6, ORF7a, 
ORF7b, ORF8, and ORF9), encompassing nsp 1–16 [3].

In the human defense system, the activation of the 
type 1 interferon (IFN) pathway contribute to abolish 
viral infection. The host pattern recognition receptors 
are actively involved in the identifications of pathogen-
associated molecular patterns and activation of Inter-
feron regulatory factor 3 (IRF3) [4]. In general, the IRF3 
is normally present in the cytoplasm in an inactive state, 
however, during viral pathogenesis, the IRF3 is activated 
by phosphorylation and translocated to the nucleus [5]. 
In the nucleus, the activated IRF3 binds to conserved 
sequences known as IFN stimulated response elements 
to trigger the transcription of type I IFN genes which are 
necessary for the control of early viral infection [6, 7].

For effective infection, viruses, particularly coronavi-
ruses, have developed a mechanism to inhibit IFN pro-
duction by targeting distinct elements of IFN signaling 
[8]. By attaching to IRF3, viral proteins help coronavi-
ruses in suppressing the host’s innate immune system, 
by inhibiting the synthesis of IFNß [8–12]. Furthermore, 
RNA viruses particularly the SARS-CoV and SARS-
CoV-2, are prone to rapid mutagenesis that enhanced the 
virus spread and infection [12].

ORF8 protein which contains 366 nucleotides and 121 
amino acids is the most important SARS-CoV-2 acces-
sory protein, and it is more prone to mutation [13]. ORF8 
protein escapes the human immune system by binding to 
and reducing the nuclear translocation of IRF3 and hence 
downregulating the MHC-1 (major histocompatibility 
complex class I) [14] and the type I IFN signaling path-
way [15–17]. The pathway is shown in the Fig.  1. Since 
the appearance of SARS-CoV-2, there have been various 
mutations detected in ORF8. These mutations, like L84S, 
V62L, S24L, and W45L, have been identified in various 
SARS-CoV-2 variants. Changes in ORF8 due to these 
mutations have influenced their ability to bind with IRF3. 
For instance, the W45L mutation showed increased affin-
ity for IRF3, suggesting a heightened capacity for immune 
evasion [18].

Virtual drug screening, molecular dynamics (MD) sim-
ulation, and binding free energy calculation collectively 

revolutionize drug discovery by offering efficient compu-
tational methodologies to identify and optimize potential 
drug candidates[19, 20]. Virtual screening accelerates 
the initial stages of drug discovery by swiftly evaluating 
large chemical libraries and prioritizing compounds for 
experimental testing based on predicted binding affinities 
[21]. MD simulations provide detailed insights into the 
dynamic behavior and structural flexibility of biomolecu-
lar systems, elucidating key interactions between ligands 
and their target proteins. Binding free energy calculations 
complement experimental data by quantitatively estimat-
ing the strength of ligand–protein interactions, guiding 
the rational design of more potent and selective drugs 
[22, 23]. Carbon nanotubes (CNTs) have a wide range of 
potential applications, including nanoelectronics, biosen-
sors, biomolecular recognition devices, molecular trans-
porters, cancer therapy, and diagnosis. Many studies have 
been done on the biological impacts of carbon nanotubes 
and concluded that the interactions of target proteins 
and CNTs (nanoparticle–protein corona) play important 
role in the control of biological activities [24]. Previously 
the carbon nanotubes were used against the HBx-Bcl-
xL interface to halt the hepatitis B viral replication [25]. 
The same were also used to specifically target the RAN 
polymerase of the influenza A virus. These investigations 
revealed that such targeting could effectively impede 
both the infection by the influenza A virus and the 
expression of its nucleoprotein and nonstructural pro-
tein 1 [26]. The discovery of novel drugs by targeting the 
interface involved in the pathogenesis makes a significant 
contribution to the field of therapeutics development 
[27]. Since ORF8 protein participates in important cellu-
lar activities like binding to IRF3 and escaping the human 
immune system [16]. Therefore, in the current study, 
the high-affinity carbon nanotubes were used to target 
the ORF8 interface by using the virtual drug screening, 
molecular dynamic simulation and binding free energy 
calculation approaches. Using molecular docking and 
molecular dynamics simulation we target the interface of 
ORF8 to curtail the binding of this protein with the IRF3 
and reduce the chances of SARS-CoV-2 infection.

Materials and methods
Data retrieval and preparation
The crystal structure of the ORF8 protein (PDB ID: 7jtl) 
was retrieved from the protein databank (https:// www. 
rcsb. org/ struc ture/ 1p4q) [28]. The GalaxyRefine online 
server was used for the energy minimization and refine-
ments of the ORF8 protein structure. The GalaxyRefine 
online server enhances protein structures generated 
by modeling or prediction methods through a series 
of refinements including side-chain optimization, loop 
modeling, energy minimization, and molecular dynamics 

https://www.rcsb.org/structure/1p4q
https://www.rcsb.org/structure/1p4q
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simulations. By adjusting side-chain conformations and 
optimizing local geometry, GalaxyRefine aims to improve 
the overall quality and accuracy of protein models, reduc-
ing steric clashes and enhancing packing interactions 
[29]. To target the ORF8 binding interface we searched 
the literature and found 62 distinct carbon nanotubes 
which have the favorable properties and used previously 
against the biological targets in different diseases [30]. 
Then the PyRx tool was used for the arrangement and 
minimization of identified nanotubes [31].

Screening of carbon nanotubes against ORF8 interface
After preparing all the retrieved nanotubes were tested 
against the previously identified interface of ORF8 pro-
tein used for binding with the IRF3 protein. The resi-
dues 62–85 of ORF8 are reported to be responsible for 
binding with the IRF3 protein. Therefore, these interface 
residues were selected for binding with the nanotubes. 
Before commencing virtual screening with EasyDock 
Vina 2.0, all nanotubes were converted into the.pdbqt 
format. The ligands were transformed into pdbqt 

Fig. 1 Illustrating the function of ORF8 and IRF3 in immune evasion
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structures, meticulously assigning their atomic charges 
and atom types using advanced tools like Open Babel. 
Special attention was paid to non-polar hydrogen atoms, 
Gasteiger charges, and identifying torsion tree roots nec-
essary for subsequent flexibility analysis of the ligands. 
On the other hand, preparing the receptor involved gen-
erating grid maps with AutoGrid, a crucial step in defin-
ing the docking space. This complex process included 
setting grid dimensions, determining appropriate spac-
ing parameters, and preparing the macromolecule in 
pdbqt format. Additionally, the receptor was enhanced 
with hydrogen atoms, charge assignments, and atom type 
specifications to ensure compatibility with subsequent 
docking procedures. This software offers an intuitive 
graphical interface for efficiently screening virtual data-
bases. The screening process utilized the AUTODOCK4 
algorithm to evaluate and prioritize potential nanotube 
candidates. To expedite the initial screening, a lower 
exhaustiveness setting of 16 was chosen. Following this, 
the most promising compounds were subjected to a sec-
ond screening with a higher exhaustiveness value of 64. 
This phase was undertaken to eliminate false-positive 
results and reassess the compounds that ranked highest 
based on their scores [32]. Based on high scores, the best 
hits were processed for the redocking and rescoring.

Induced‑fit Docking (IFD) of the top hits
In the following phase, the shortlisted compounds 
with high scores underwent a rigorous screening pro-
cess known as induced fit docking (IFD), employing an 
exhaustive 64-step approach. This method utilized Auto-
DockFR, which utilizes the AutoDock4 scoring function 
and has been enhanced to improve the success rate of the 
docking process [33]. During cross-validation docking 
experiments, it was observed that AutoDockFR exhibited 
superior accuracy in identifying docking poses and nota-
bly outperformed AutoDock Vina in terms of speed with-
out compromising precision.

Molecular dynamics simulation of the top hits
The molecular dynamics simulation of the selected top 
hits docking complexes employed the Amber20 package 
[34]. The simulation incorporated the amber GAFF (gen-
eral force field) and ff14SB forcefield for the complexes, 
with drug topologies generated using the antechamber 
module. Subsequently, each system underwent solvation 
and neutralization using a TIP3P water box and Na+ 
counter ions. A two-step energy minimization proce-
dure was utilized, succeeded by a process involving heat-
ing and equilibration. The Particle Mesh Ewald (PME) 
method [35] was employed to calculate long-range elec-
trostatic interactions. Van der Waals contacts and short-
range Coulombic interactions were considered within a 

cut-off range of 1.4 nm. Temperature was maintained at 
300 K using a Langevin thermostat, while pressure con-
trol utilized a Berendsen barostat. The simulation dura-
tion for each complex was 50 ns (50 ns), employing a time 
step of 2  fs. CPPTRAJ and PTRAJ tools were employed 
to evaluate dynamics, stability, and other characteristics 
of the ligand–protein complexes [36, 37].

Post simulation analysis
The analysis of the tophits-ORF8 complexes involved 
using CPPTRAJ and PTRAJ software packages to evalu-
ate various structural properties [37]. To assess com-
pactness, dynamic stability, average hydrogen bond 
formation, and flexibility, specific calculations were 
employed. Radius of gyration (Rg) was computed to 
measure structural compactness, employing the formula:

where ri represents the position of the atom at index i, mi 
is its mass, rCM is the center of mass, N is the total num-
ber of atoms, and r2RG is the squared radius of gyration. 
To measure structural stability over the simulation, Root 
Mean Square Deviation (RMSD) was calculated using:

δ2i refers to the squared disparity between the position 
of an atom at index i and its position in the reference 
structure, while N represents the total number of atoms.

For investigating individual residue-level flexibility, 
Root Mean Square Fluctuation (RMSF) computations 
were employed. RMSF evaluates residue fluctuations 
rather than overall complex positional changes. The 
RMSF was determined via the formula:

where B represent the B-factor or thermal factor and 
Δr2 is the mean square deviation. To obtain RMSF while 
considering the three spatial dimensions, the rearranged 
equation is used:

The binding free energy calculations
The MMPBSA.PY script was utilized to compute the 
binding free energy of individual protein–ligand com-
plexes, incorporating 2500 snapshots [38–41]. This 
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approach for estimating free energy is widely adopted 
in diverse research to measure the total binding energy 
(TBE) of different ligands across various studies [42–44]. 
The binding free energy was calculated for receptors (Gre-

ceptor, solvated), unbound states of ligand (Gligand, solvated) and 
for each complex (Gcomplex, solvated). Expanding on this, 
Equation can be expressed as follows:

To delve deeper into the specific energy contributions, 
we reformulated Equation as:

To calculate the specific energy term, the formula was 
restructured as follows:

The overall binding energy comprises several com-
ponents. The ΔGbind represents the protein–protein, 
protein–ligand and protein nucleic acid associated free 
energy. The ΔEMM denoted the overall gas phase energy. 
Solvation entails the combined effects of polar (ΔGPB/
GB) and nonpolar (ΔGSA) components. The polar con-
tribution, ΔGPB/GB, is typically determined through 
Poisson–Boltzmann (PB) or generalized Born (GB) 
methods, while ΔGSA represents the nonpolar solvation 
free energy and is often derived from a linear function of 
solvent-accessible surface area (SASA).

Bioavailability, metabolism, and potential toxicity analysis 
of top hits
For evaluating the Absorption, Distribution, Metabolism, 
Excretion, Toxicity (ADMET) properties of top hit nano-
tubes, we employed the admetSAR online tool (http:// 
lmmd. ecust. edu. cn/ admet sar2). AdmetSAR is a com-
prehensive resource providing the latest data on diverse 
chemicals and their Absorption, Distribution, Metabo-
lism, Excretion, and Toxicity profiles. Its user-friendly 
interface enables searching by name, CASRN, and simi-
larity. Moreover, admetSAR utilizes the ADMET-Simula-
tor, a cutting-edge chemoinformatics toolbox, to predict 
approximately 50 ADMET endpoints using highly accu-
rate QSAR models [45].

(5)
�Gbind = G(complex,solvated) − G(ligand,solvated) − G(receptors,solvated)

(6)G = EMolecularMechanics − Gsolvated − TS

(7)

�Gbind = �EMolecularMechanics +�Gsolvated −�TS

= �Gvaccum +�Gsolvated

(8)
�EMolecularMechanics = �Eint +�Eelectrostatic +�EvdW

(9)�Gsolvated = �GGeneralizedborn +�Gsurfacearea

(10)�Gsurfacearea = γ .SASA+ b

Results and discussion
Structural retrieval and pre‑processing
ORF8 protein which contains 366 nucleotides and 121 
amino acids is the most important SARS-CoV-2 acces-
sory protein, and it is more prone to mutation [13]. In 
the human defense system, the activation of the type 1 
interferon (IFN) pathway contributes to eliminate viral 
infection. However, a recent study reported that ORF8 
protein escapes the human immune system by binding to 
and reducing the nuclear translocation of IRF3 and hence 
downregulating the MHC-1 (major histocompatibility 
complex class I) [14] and the type I IFN signaling pathway 
[15–17]. The overall pathway is shown in the Fig. 1. Due 
to the critical role of ORF8 protein in the human immune 
system evasion, it could be an important drug target in 
the therapeutic development of SARC-CoV-2 infection. 
Therefore, the current study was designed to screen the 
high-affinity carbon nanotubes against the ORF8–IRF3 
interface to block its binding and halt immune evasion by 
SARC-CoV-2. The 3D structure of ORF8 (PDB ID: 7JX6) 
was retrieved from the protein databank (https:// www. 
rcsb. org/ struc ture/ 1p4q) [28]. Then the structure was 
minimized and prepared before the screening of carbon 
nanotubes. The overall work flow of this study is shown 
in the Fig. 2.

Screening of ORF8–IRF3 binding interface with carbon 
nanotube
Carbon nanotubes (CNTs) possess extensive potential 
applications spanning nanoelectronics, biosensors, bio-
molecular recognition devices, molecular transporters, 
and cancer diagnosis and therapy [46]. Numerous inves-
tigations have focused on the biological effects of carbon 
nanotubes, revealing that the interplay between CNTs 
and target proteins (referred to as nanoparticle–protein 
corona) significantly influences biological functionali-
ties [47, 48]. A total of 62 carbon nanotubes (fullerenes) 
were collected from various sources and screened against 
the ORF8–IRF3 binding interface using the PyRx virtual 
screening approach. Before docking, the ligand molecules 
were arranged and the binding interface residues (aa 
62–85) of ORF8 were defined for the docking as shown in 
Fig. 3a. The two-step approach was used for the screen-
ing of collected nanotubes with ORF8 proteins. In the 
first step, the score range was set to − 7.41 to − 4.36 kcal/
mol, and screened all the 62 carbon fullerenes. Then in 
the next step, the induced-fit docking approach with 64 
exhaustiveness was carried out to screen the 13 highest 
scoring compounds to confirm the best final hits. For 
IDF, to improve the success rate of docking, the ADFR 
(AutoDcokFR-AutoDock for Flexible Receptor) which 
utilized the AutoDock4 algorithm was used. The ADFR 
lowers the internal energy of the receptor and also 

http://lmmd.ecust.edu.cn/admetsar2
http://lmmd.ecust.edu.cn/admetsar2
https://www.rcsb.org/structure/1p4q
https://www.rcsb.org/structure/1p4q
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optimized the confirmation of the receptor side chain. 
Finally, for shortlisting the best final hits the range of 
binding energy was set to > − 7.0 kcal/mol. By using the 

aforementioned parameters, the IFD docking found only 
5 compounds having binding free energy > − 7.0  kcal/
mol. The docking scores of the first two best compounds 

Fig. 2 The figure showing the overall work flow of the study such as screening of nanotubes, molecular docking and molecular dynamic simulation

Fig. 3 a showing interface residues of ORF8 with IRF3. b Showing the interactions of best hit1 with ORF8 residues. c Showing the interactions 
of best hit2 with ORF8 residues. The green color represents the best hits while the cyan color represents the interacting residues of ORF8
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were reported to be − 7.94 and − 7.92 kcal/mol, respec-
tively. As shown in Fig. 3b the best hit 1 formed 3 hydro-
gen bonds with Gly66, Gln72, Ser97, and 6 hydrophobic 
bonds with the Gly66, Gln72, Ser97, and Leu57, Ile58, 
Ile76, Asn78 residues. However, the best hit 2 (Fig.  3c) 
established 1 hydrogen bond with Arg52 and 7 hydro-
phobic bonds with, Glu59, Pro65, Ile71, Ile74, and Leu75 
residues. In conclusion, both the top hit 1 and 2 targeted 
the specific residues involved in the interaction with the 
IRF3. For instance, the top hit 1 targeted the Gly66 and 
Gln72, while Hit 2 targeted Pro65, Ile71, and Ile74 key 
residues crucial for the ORF8–IRF3 interaction. This tar-
geted binding may impede ORF8’s interaction with IRF3 
by blocking these critical residues. The interactions of 
compounds 1 and 2 with the ORF8 residues are shown 
in Fig. 3.

Afterward, compound 3 (best hit 3) with a dock-
ing score of − 7.28 kcal/mol showed a similar pattern of 
contacts with the ORF8 binding interface with 1 cation 
(Lys68) and 5 hydrophobic interactions (Gln18, Glu19, 
Tyr73, Asn78, Tyr79). Moreover, the docking score of 
best hit4 was reported to be − 7.19 kcal/mol and estab-
lished 4 hydrogen (Leu60, Glu64, Ala65, Gly77) and 6 
hydrophobic bonds (Leu57, Ile58, Ala65, Ile76) with the 
ORF8 interface residues. Finally, with a docking score of 
− 7.09  kcal/mol the best hit5 established 6 hydrophobic 
interactions with Ile58, Val62, Lys68, Tyr73, Asn78 and 
Tyr79 amino acid residues. In summary, theses top hits 
also targeted the specific residues of ORF8 such as Glu64, 
Ala65, Lys68, and Tyr73 that are involved in the binding 
with IRF3. Our results revealed high specific binding of 
the shortlisted nanotubes with the interface residues of 
ORF8 which may lead to the inhibition of the interaction 

between the ORF8 and IRF3. The binding network of best 
hits 3, 4, and 5 with the residues of the ORF8 interface 
are shown in Fig. 4.

Evaluation of dynamic stability of ORF8‑nanotube
The stability of molecular interactions within a binding 
cavity is a critical factor in finding the binding efficiency 
of small ligand molecule. This metric provides details on 
the dynamic stability of interacting molecules, which can 
shed light on the binding strength. Understanding a pro-
tein’s dynamic stability is crucial in estimating the stabil-
ity of biological complex in dynamics environment [49, 
50]. To test the stability of ORF8-nanotube complexes 
in a dynamic environment 50  ns simulations were per-
formed. The CPPTRAJ module of AMBER was applied to 
calculate the stability of complexes by several statistical 
parameters. For the said purpose, the RMSD (root mean 
square deviation) was calculated to check the actual 
deviation of a carbon atom from the original confirma-
tion of docked complexes. The lower RMSD represents 
the higher complex stability whereas the higher RMSD 
shows lower stability. The average RMSD for the top hit 
1–5 was 4.0 Å, 3.5 Å, 5.2 Å, 6.0 Å, and 4.0 Å respectively. 
According to the RMSD values, all complexes showed 
good stability with no major perturbations till 50 ns. The 
RMSD plot of top hit 1 was uniform until 33  ns with a 
minor perturbation at 15  ns however, a sudden rise of 
RMSD was depicted at 34 ns and then gained stability at 
40 ns until 50 ns (Fig. 5a). The top hits 2 and 4 gained sta-
bility at 5 ns with a mean RMSD of 3.5 Å and 6 Å. Both 
complexes showed the highest stability with no global or 
local structural changes noticed until 50 ns (Fig. 5b, d). In 
the case of the top hit 3 the system equilibrated at 10 ns 

Fig. 4 a Showing the interactions of best hit3 with ORF8 residues. b Showing the interactions of best hit4 with ORF8 residues. c Showing 
the interactions of best hit5 with ORF8 residues. The green color represents the best hits while the cyan color represents the interacting residues 
of ORF8
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and then a steady increase was observed in the RMSD 
valued till 50 ns, however, there is no major fluctuations 
were seen after equilibration (Fig. 5c). Finally, the top hit 
5 complexes gained stability at 5 ns and remained stable 
until 45 ns with no structural changes which are followed 
by minor deviation till 50 ns (Fig. 5e). The top hit 2, 4, and 
5 showed a greater intermolecular affinity of ORF8 for 
the respective nanotubes and further validate the result 
of docking in terms of lowest energy and conformational 
stability. Figure 4 shows the RMSDs of all complexes.

Residual fluctuations analysis of top hits‑ORF8 complexes
To identify the critical residues important for retaining 
the interacting ligand and overall stability of complex, 
understanding the systems flexibility at the residue level 
is indispensable. Understanding the system’s flexibil-
ity at the residue level is critical for identifying residues 
that are critical for retaining the interacting ligand and 
overall complex stability [51, 52]. To analyze the resi-
dues fluctuation, we investigated the RMSF (root-mean-
square fluctuation) of the target system. By comparing 
the Root Mean Square Fluctuation (RMSF) values of a 
protein with and without a drug, scientists can glean 
valuable insights into how the drug interacts with the 
protein and how it affects the protein’s form and func-
tion. For instance, when the RMSF values of a protein are 
elevated in the presence of a drug, it could suggest that 
the drug triggers structural adjustments and enhances 
the protein’s adaptability [53, 54]. Upon analyzing our 
findings, we observed an elevation in the Root Mean 

Square Fluctuation (RMSF) of residues within the tar-
get site (80–100) following nanotube binding compared 
to the apo state. This suggests that the drug’s binding 
induces heightened flexibility or movement in these resi-
dues, potentially to accommodate the ligand. The average 
RMSF value of all complexes is about 2 Å which further 
confirmed the results of RMSD and affirmed the high 
stability of all complexes. However, the residues present 
at N-terminal and C-terminal are showing instability 
which might be due to the highly flexible nature of pro-
tein ends [55]. Figure  6 shows the RMSF values of apo 
and all complexes.

Structural compactness analysis of top hits‑ORF8 
complexes
The radius of gyration serves as a crucial metric for 
assessing the interplay between a protein and a drug 
molecule. A reduced radius of gyration signifies a more 
compact arrangement of the protein and drug when 
they are bonded. This implies that the protein undergoes 
structural alterations upon binding with the drug, result-
ing in a tighter, more condensed structure [56]. It offers 
valuable information regarding the general configuration 
and density of the protein-drug combination. Therefore, 
analyzing the radius of gyration in a protein-drug com-
plex can help gauge the effectiveness of drug binding and 
its subsequent influence on the protein’s conformation 
[57]. To analyze the structural compactness of protein 
during the molecular dynamic simulation, we employed 
the Rg (radius of gyration) analysis. The Rg analysis 

Fig. 5 Dynamic stability analysis of top hits‑ORF8 complexes (a) represents the RMSD value of top hit 1‑ORF8 complex (b) represents the RMSD 
value of top hit 2‑ORF8 complex (c) represents the RMSD value of top hit 3‑ORF8 complex (d) represents the RMSD value of top hit 4‑ORF8 complex 
(e) represents the RMSD value of top hit 5‑ORF8 complex
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helped to identify whether the interacting residues in 
ORF8-nanotube complex are in equilibrium with a lower 
energy state and whether the residues are tightly bound 
to each other. Lower the Rg value higher will be the sta-
bility whereas a higher Rg indicates the instability of the 
system. As shown in Fig. 7a–e the average Rg values for 
the tophit1-5 were found to be 16.5, 17.7, 16.8, 16.6, and 
17.6 respectively, however, some fluctuations in Rg values 
were found during the simulations due to the binding and 
unbinding of nanotubes with the ORF8 during this time.

Determining strength of intermolecular interactions
Hydrogen bonding plays a crucial role in the stabil-
ity of binding complexes and the effective function-
ing of biological interactions. Evaluating the hydrogen 
bonds established in molecular interactions is a valuable 
method for assessing binding affinity [58]. A compre-
hensive comprehension of the hydrogen bonding con-
figurations within protein-drug interactions is vital for 
making precise predictions about the strength of these 

interactions [59, 60]. The final ORF8-nanotubes com-
plexes were subjected to the hydrogen bonding analysis 
to calculate the number of hydrogen bonds in the frame 
during the MD simulations. As shown in Fig.  8 all the 
ORF8-nanotubes complexes have a strong network of 
hydrogen bonds which represent the stabile interaction 
of nanotubes with the target ORF8. In each frame, the 
average hydrogen bonds in each complex were recorded 
to be 45, 43, 38, 43, and 40 respectively. The above results 
of hydrogen bonding counter verify the results of RMSD 
and RMSF in terms of complex stability. Figure 8 shows 
the hydrogen bonds of all complexes.

Binding free energy calculations of top hits‑ORF8 
complexes
Assessing the binding energy is crucial for re-evaluating 
the binding conformation and verifying the accuracy of 
the interacting components. This approach offers supe-
rior accuracy and is cost-effective compared to wet lab 
experiments. Previously, it has been utilized to ascertain 

Fig. 6 Residues flexibility of all complexes calculated as RMSF

Fig. 7 Calculation of Rg for all complexes. a showing the Rg value of top hit 1, b showing the Rg value of top hit 2, c showing the Rg value of top 
hit 3, d showing the Rg value of top hit 4, e showing the Rg value of top hit 5
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the binding energy of small molecules that target recep-
tors and druggable proteins of SARS-CoV-2 [55, 61, 62]. 
Given the method’s broad applicability, we’ve computed 
the binding free energy for the top five candidates uti-
lizing MD trajectories. The computed Van der Waals 
energy values for the top-ranking complexes, specifi-
cally complexes 1 through 5, demonstrated a distinct 
stability stemming from intermolecular forces. These 
recorded values were as follows: − 49.49 ± 1.09  kcal/
mol, − 55.58 ± 1.19  kcal/mol, − 55.43 ± 0.69  kcal/mol, 
− 54.50 ± 0.71  kcal/mol, and − 41.84 ± 0.84  kcal/mol 
for their respective complexes. These figures empha-
size the attractive forces generated by Van der Waals 
interactions among the molecules, shedding light on 
the stability and affinity of these complexes. In addi-
tion, the electrostatic energy calculations for these same 
complexes provide insights into their charged interac-
tions. The computed electrostatic energy values are 

as follows: − 1.93 ± 0.80  kcal/mol, 58.72 ± 2.37  kcal/
mol, − 5.52 ± 0.52  kcal/mol, 26.23 ± 2.66  kcal/mol, and 
118.97 ± 9.71 kcal/mol, revealing the extent to which elec-
trostatic forces contribute to the overall binding energy. 
Furthermore, the binding free energies for ESURF, EGB, 
Delta G Gas, and Delta G Solv have been determined and 
are presented in Table 1. The total binding free energy for 
each hit was calculated to be − 43.21 ± 0.90 kcal/mol for 
hit1, − 41.17 ± 0.99 kcal/mol for hit2, − 48.85 ± 0.62 kcal/
mol for hit3, − 43.49 ± 0.77  kcal/mol for hit4, and 
− 31.18 ± 0.78 kcal/mol for hit5. The total binding energy 
is mainly contributed by the vdW while in some com-
plexes the electrostatic energies were observed to con-
tribute to the total binding energy. Similar range of values 
has been previously reported for the drug-protein inter-
actions which further validate our results of binding free 
energy [20, 27, 63].

Fig. 8 The hydrogen bonding network of all complexes. a showing the average hydrogen bonds for top hit 1‑ORF8 complex, b showing 
the average hydrogen bonds for top hit 2‑ORF8 complex, c showing the average hydrogen bonds for top hit 3‑ORF8 complex, d showing 
the average hydrogen bonds for top hit 4‑ORF8 complex, e showing the average hydrogen bonds for top hit 5‑ORF8 complex

Table 1 Binding free energy computation for the top hits using MM/GBSA method

Parameters Top hit 1 Top hit 2 Top hit 3 Top hit 4 Top hit 5

VDWAALS − 49.49 ± 1.09 − 55.58 ± 1.19 − 55.43 ± 0.69 − 54.50 ± 0.71 − 41.84 ± 0.84

EEL − 1.93 ± 0.80 58.72 ± 2.37 − 5.52 ± 0.52 26.23 ± 2.66 118.97 ± 9.71

EGB 13.35 ± 0.49 − 39.76 ± 2.01 18.62 ± 0.55 − 10.15 ± 2.46 − 103.63 ± 8.86

ESURF − 4.74 ± 0.03 − 4.19 ± 0.03 − 4.50 ± 0.03 − 5.05 ± 0.08 − 4.68 ± 0.12

DELTA G gas − 51.82 ± 0.64 2.79 ± 1.73 − 62.96 ± 0.69 − 28.27 ± 2.85 77.12 ± 9.46

DELTA G solv 8.60 ± 0.52 − 43.96 ± 1.99 14.11 ± 0.53 − 15.21 ± 2.47 − 108.31 ± 8.80

DELTA TOTAL − 43.21 ± 0.90 − 41.17 ± 0.99 − 48.85 ± 0.62 − 43.49 ± 0.77 − 31.18 ± 0.78
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Analysis of ADMET properties for the selected top hits
ADMET properties analysis is essential for drug design 
as it enables early identification of compounds with 
favorable pharmacokinetic and toxicological profiles, 
reducing the risk of late-stage failures and optimizing 
drug efficacy. By assessing factors such as absorption, dis-
tribution, metabolism, excretion, and toxicity, research-
ers can enhance drug safety, comply with regulatory 
standards, and predict clinical outcomes more accurately 
[64, 65]. Therefore, we proceeded to assess the ADMET 
properties of our chosen leading compounds utilizing 
the AdmetSAR online tool. Upon conducting oral bio-
availability analysis, it was discerned that top hit 1 and 
top hit 4 possess the desirable attribute of oral bioavail-
ability, while the remaining candidates lack this property. 
Notably, the efficacy of drug absorption hinges on water 
solubility, with heightened solubility indicating enhanced 
absorption features and heightened bioavailability [66]. 
Analysis of water solubility indicated that all the top hits 
displayed remarkably high solubility in water, achieving 
scores of − 4.173, − 3.889, − 2.964, − 4.173, and − 3.153 
for hits 1 through 5, respectively. Notably, all these top 
hits exhibited exceptional intestinal absorption rates 
of 100%. While most top hits effectively penetrated the 
blood–brain barrier, top hit 2 stood out as an exception. 
It is noteworthy that none of the identified top hits dem-
onstrated carcinogenicity, eye irritation, nephrotoxicity, 
or skin sensitization. However, both top hit 1 and top hit 
4 were associated with hepatotoxicity. Additionally, res-
piratory toxicity was observed across all top hits except 
for top hit 2. Despite the importance of the organic cat-
ion transporter 2 (OCT2) substrate in renal clearance 
enhancement, none of the compounds demonstrated 
activity as OCT2 substrates. Comprehensive ADMET 
properties of the top hits are summarized in Table 2.

Conclusions
In the stride toward combating the SARS-CoV-2, this 
study harnessed the power of Nano medicine-based 
approaches to unravel the pharmacological impact of 
carbon-based nanotubes. A strategic focus on the ORF8 
interface emerged as a beacon of hope, a pivotal move 
in salvaging the host immune response. Within this 
molecular theater, five Nano carbons took center stage, 
demonstrating binding propensity against the essential 
residues—a promising ensemble of viral adversaries 
met with precision and efficacy.

The study’s narrative seamlessly transitioned into 
the intricate realm of molecular simulations. The bind-
ing free energy, a measure of the molecular forces at 
play, underscored the robust and favorable interactions 
between the identified Nano carbons and their viral 
counterparts.

Yet, this culmination marks not a conclusion but a 
prelude to the next act. The identified compounds, hav-
ing displayed prowess in the virtual domain, now beckon 
the tangible realities of in vitro and in vivo validation. The 
laboratory and living organisms stand as arenas where 
these Nano protagonists shall undergo rigorous scrutiny, 
their efficacy and safety scrutinized in the relentless pur-
suit of a COVID-19 treatment breakthrough.
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