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Abstract 

Background: Isoxazoles exhibit interesting biological activities, and the 1,3-dipolar cycloaddition(13DC) reactions 
play an important role in both mechanistic and synthetic organic chemistry. Pyrazoles and annulated pyrazoles 
exhibit some diverse biological activities. They are used as antipyretic, analgesic drugs, tranquilizing, and herbicidal 
agents. Pyrazoles are also used extensively as useful synthons in organic synthesis. Pyrazolo[3,4-d]pyridazines showed 
good antimicrobial, anti-inflammatory and analgesic activities. Several oximes are found to be hyperglycemic, anti-
neoplastic, anti-inflammatory, anti-leishmanial and VEGFR-2 kinase inhibitors.

Results: The present work describes an efficient synthesis protocol and molecular orbital calculations of isoxazo-
line and pyrrolo[3,4-d]isoxazole-4,6-dione derivatives from the reaction of hydroximoyl chloride with acrylonitrile, 
acrylamide, and N-arylmalemides. In addition, pyrazoles and pyrazolo[3,4-d]pyridazines are obtained via the reaction 
of 3-(dimethylamino)-1-(2,4-dimethyl-1,3-thiazol-5-yl)prop-2-ene-1-one with hydrazonoyl halides. Pyrazolo[1,5-a]
pyrimidines were derived from condensation of either Sodium Salt of 3-Hydroxy-1-(2,4-dimethylthiazol-5-yl)prop-2-
en-1-one (10) or 3-(dimethylamino)-1-(2,4-dimethyl)(1,3-thiazol-5-yl)prop-2-en-1-one (11) with aiminopyrozoles. A 
comparative study of the biological activity of the synthesized compounds with ampicillin and tetracycline is com-
piled in Table 3. Generally, all synthesized compounds showed an adequate inhibitory efficiency of growth of gram-
positive and gram-negative bacteria. Structures of the newly synthesized compounds were elucidated by elemental 
analysis, spectral data and a computational study.

Conclusions: In summary, new and efficient synthetic routes of isoxazoline, pyrrolo[3,4-d]isoxazole-4,6-dione deriva-
tives, pyrazoles, pyrazolo[3,4-d]pyridazines and pyrazolo[1,5-a]pyrimidines have been achieved and the biological 
activity has been investigated.
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Background
Isoxazoles exhibit interesting biological activities [1, 2], 
and oxazoles are widely recognized for their therapeutic 

purposes, especially as tranquillizing agents and CNS 
regulates. They are known to have bacteriostatic, bac-
tericidal and fungicidal activities [3]. The 1,3-dipolar 
cycloaddition(13DC) reactions play an important role 
in both mechanistic and synthetic organic chemistry. 
Pyrazoles and annulated pyrazoles exhibit some diverse 
biological activities. They are used as antipyretic [4], 
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analgesic drugs [5–7], tranquilizing [8] and herbicidal [9] 
agents. Pyrazoles are also used extensively as useful syn-
thons in organic synthesis [10–17]. Recently, the synthesis 
of biologically active compounds based on pyrazolo[3,4-
d]pyridazines systems are of outstanding importance 
for medicinal and biological utilities [18, 19], Generally, 
pyrazolo[3,4-d]pyridazines showed good antimicrobial, 
anti-inflammatory and analgesic activities [20]. Herein, we 
report a facile synthesis procedure for some new deriva-
tives of the newly developed isoxazoline, pyrrolo[3,4-d]
isoxazole-4,6-dione derivatives, pyrazoles, pyrazolo[3,4-d]
pyridazines and pyrazolo[1,5-a] pyrimidines.

Results and discussion
Chemistry
The reaction of 1-(2,4-dimethyl(1,3-thiazol-5-yl))-2-bro-
moethan-1-one (1) [21] with dimethylsulfide in refluxing 
ethanol has afforded 1-(2,4-dimethylthiazol-5-yl)-2-ox-
odimethylsulfonium bromide (2) [21], furthermore, the 
nitrosation of (2) in dioxane-water solution acidified with 
hydrochloric acid gave 2-chloro-2-(hydroximino)-1-(2,4-
dimethyl-1,3-thiazol-5-yl)ethanone (3). The chemical 
structure of (3) was confirmed based on elemental analy-
sis, spectral data, and chemical transformations. The 1H 
NMR spectrum showed signals at δ = 2.47 (s, 3H, CH3), 
2.71 (s, 3H, CH3) and 13.18 (s, 1H, NOH). The IR spec-
trum revealed absorption bands at 3370 cm−1 (OH) and 
1655 cm−1 (CO conjugated) (Scheme 1).

Moreover, the treatment of 2-chloro-2-(hydroximino)-
1-(2,4-dimethylthiazol-5-yl)ethanone (3) with acryloni-
trile in boiling toluene afforded an insoluble product, 
according to TLC, of which structures (4) and (5) seemed 
to be possible (Scheme 2). The 1H NMR spectrum of the 
product showed signals at δ = 2.57 (s, 3H, CH3) 2.80, (s, 
3H, CH3), 2.90–2.94 (d, 2H, CH2, J = 10 Hz, isoxazoline 
C-4) and 3.85 (t, 1H, J = 10 Hz, isoxazoline C-5). Its IR 
spectrum revealed bands at 1665  cm−1 (CO). However, 
no absorption bands appeared at 2200 cm−1 correspond-
ing to the CN group in support of the 5-cyano struc-
ture [22]. The product was readily hydrolyzed by dilute 
sulfuric acid to give the corresponding 3-[(2,4-dime-
thyl-1,3-thiazol-5-yl)carbonyl]-4,5-dihydroisoxazole-
5-carboxamide (6) (IR spectral bands at 3350, 3170 cm−1 
(NH2) and 1680  cm−1 (CO)). In addition, refluxing of 
2-chloro-2-(hydroximino)-1-(2,4-dimethylthiazol-5-yl)
ethanone (3) with acrylamide in a boiling toluene fur-
nished an identical product with compound (6) in all 
aspects (m.p., mixed m.p., spectra). Hence, the proposed 
structure (4) was excluded and the product was assigned 
to a formulated structure of 3-[(2,4-dimethyl-1,3-thiazol-
5-yl)carbonyl]-4,5-dihydro-isoxazole-5-carbonitrile (5). 
Also, the compound (3) was reacted with the appropriate 
N-arylmalemides (7a–c) in boiling toluene and produced 
3-[(2,4-dimethyl-1,3-thiazol-5-yl)carbonyl]-5-substi-
tuted-3(aH)-pyrrolo[3,4-d]isoxazole-4,6 (5H,6aH)dione 
(8a-c), respectively (Scheme 2).
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Scheme 1 Synthesis of 2-chloro-2-(hydroximino)-1-(2,4-dimethylthiazol-5-yl)ethanone (3)
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The structures of compounds (8) were confirmed by 
elemental analysis and spectral data. The IR spectra of 
(8a–c) revealed bands at 1730 and 1637  cm−1 assigned 
for CO and -CO-NAr-CO- groups [23]. The 1H NMR 
spectrum of (8a) showed signals at δ = 2.66 (s, 3H, CH3), 
2.92 (s, 3H, CH3), 5.23–5.24 (d, 1H, J = 7.4 Hz, isoxazo-
line C-4), 5.81–5.88 (d, 1H, J = 7.4 Hz, isoxazoline C-5), 
and 7.22–7.33 (m, 5H, ArH’s).

Quantum chemical calculations
Computational methods
All calculations have been carried out using the Gauss-
ian 09 suite of programs [24]. The geometries of the 
reactants, transition states and products have been fully 
optimized at the DFT/B3LYP/6-311 ++G** level of the 
theory [25–28]. Frequency calculations were performed 
at the same level of the theory in order to characterize the 
stationary points and to evaluate the zero-point energy 
(ZPE), free energies (G) and enthalpies (H) at 298.15 K. 
TSs had only one imaginary frequency.

The interaction between acrylonitrile and 2,4-dimeth-
ylthiazol (13DC) can give two isomeric structure 5 (head-
to-head) or 4 (head-to-tail) as shown in Scheme 3. There 
are some theoretical studies of the 1,3-dipolar cycload-
ditions of carbon materials [29–31]. Density functional 

theory (DFT) is employed to investigate the 13DC reac-
tion. We report a computational study of regioselectivity 
of 2,4-dimethylthiazol (3) cycloadditions to acrylonitrile 
dipolarophiles. Our main objective in obtaining these 
results is to calculate the energy barrier for the 13DC 
reaction. B3LYP method confirms that the 5 geometry 
is preferred by 3.789 kJ mole−1, see Table 1. Our results 
are in complete agreement with experimental which indi-
cated that the 5 conformer is the product from the above 
reaction. The calculated geometries of the stationary 
points corresponding to this 13DC reaction (reactants, 
transition states, and products) are presented in Fig.  1. 
The total and relative energies are shown in Tables 1 and 
2. The TSs structures from B3LYP calculations for 13DC 
are very similar with minor changes in the bond distances 
and energies, see Tables 1 and 2. Four bond distances are 
important in 13 DC reaction. Two existing double bonds 
elongate (C=C and C=N) and two new bonds form (C–C 
and C–O) during this cycloaddition reaction. The C–C 
bond lengths of the acrylonitrile are only ~0.02 longer 
in the transition states than in the reactant. Similarly, 
the C–N and N–O bond lengths of structure 3 are only 
changed by 0.013 Å longer in the transition states than in 
the reactant. It is clear to note that, each transition state 
involves significant bending of structure 3 angle from its 
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planar ground-state geometry to a product-like bending 
angle. The distorted structure for 3 structure with bend-
ing angle is named 3D as presented in Fig. 1. The bending 

angle changes from the ground state to the transition 
state range from 180° to ~120°. The distortion energy 
for structure 3 is 199.247 kJ mole−1. The corresponding 
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Table 1 Zero point energy (ZPE), electronic energy (E), enthalpy (H) and  free energies (G), total energy (E +  ZPE) com-
puted at 298 K of the stationary points involved in the studied 13DC reaction using B3LYP/6-311 ++G** level of theory

Structure ZPE E H G Et

au

 2 0.05058 −170.88289 −170.82720 −170.85818 −170.83231

 3 0.12172 −928.57717 −928.44370 −928.49390 −928.45545

 3D 0.11855 −928.49839 −928.36910 −928.41635 −928.37984

 TS1 0.17372 −1099.43404 −1099.24270 −1099.30732 −1099.26032

 TS2 0.17355 −1099.43868 −1099.24740 −1099.31274 −1099.26513

 4 0.17903 −1099.50842 −1099.30020 −1099.37243 −1099.32939

 5 0.17858 −1099.50940 −1099.31520 −1099.37487 −1099.33082
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Fig. 1 Optimized geometries obtained by B3LYP/6-311 ++G** of all spices in the studied 13DC reaction. The bond lengths are given in angstroms
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activation barrier, enthalpy, free energy and reaction 
energies are given in Table  2. As mentioned before, the 
studied 13DC reaction favors structure 5 product with 
the lower activation energy (72.328 kJ mole−1) and high 
negative values of enthalpy and free energy.   

The frontier molecular orbital (FMO) obtained by 
B3LYP/6-311 ++G** level of the theory of the studied 

molecules are plotted in Fig.  2. The energies and shape 
of the FMO (HOMO and LUMO) for both 1,3-dipole 3 
and dipolarophile determine the chemical reactivity in 
cycloaddition reactions. Hence, the interaction between 
the FMO is important to rationalize of the cycloaddition 
processes. The computations demonstrate that the distor-
tion structure  3 to give 3D structure decrease HOMO–
LUMO separation energy, which is capable to react with 
acrylonitrile. When the separation energy between the 
interaction orbital small, the better they interact. Com-
paring the energies of the FMO, HOMO–LUMO of the 
dipolarophile and 3, we can suggest that 13DC reaction 
as HOMO for 3 controlled. The interaction of the dipole 
HOMO with the dipolarophile LUMO is greater, due 
to small separation interaction energy between them. 
The computations show that the structure 3 has a small 
HOMO–LUMO gap energy (4.358  eV) compared to 3D 
structure (3.319  eV). As shown in Fig.  2, the interaction 

Table 2 Enthalpies (∆H) and  free energies (∆G), barrier 
energies 

(

Efa, E
b
a

)

, relative energies (∆E) computed at 298 K 
of the stationary points involved in the studied 13DC reac-
tion using B3LYP/6-311 ++G** level of theory

Product ∆H ∆G E
f
a

E
b
a

∆E

kJ/mole

 4 −273.437 −59.468 −72.328 −182.020 3.789

 5 −274.012 −60.043 −65.549 −173.141 0

Fig. 2 FMO interactions in 13DC and the HOMO, LUMO, gap energy (HOMO–LUMO) and interaction separation energies (HOMO–LUMO) (eV) are 
calculated at B3LYP/6-311 ++G**. Values given in red color are for distortion structure 3D
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energy separation between HOMO of 3D (1,3 dipole) and 
LUMO of dipolarophile is 4.480 eV compared to the value 
of HOMO for 3 and LUMO for dipolarophile which it is 
5.074 eV. It is shown from the calculations that the reac-
tion of 3 structure (1,3 dipolar) with acrylonitrile (dipola-
rophiles) is occurred during charge transfer from HOMO 
of structure 3 to LUMO of acrylonitrile. With respect to 
the shape of HOMO and LUMO, only if the interacting 
lobes are in phase the reaction is thermally feasible. The 
lobes of HOMO for 3D and LUMO of dipolarophile are in 
the same phase, which it is thermally feasible.

Besides, the compound 1-(2,4-dimethyl-1,3-thiazol-
5-yl)ethanone (9) was reacted with ethyl formate in dried 
ether containing sodium methoxide and afforded the 
sodium salt of 3-hydroxy-1-(2,4-dimethylthiazol-5-yl)
prop-2-en-1-one (10). The structure of compound (10) 
was elucidated by its chemical transformations. Fur-
thermore, treatment of compound (10) with 3-amino-
4-phenyl-1H-pyrazole or 3-amino-5-phenyl-1H-pyrazole 
in glacial acetic acid containing piperidenum acetate 
afforded compounds 5-(2,4-dimethyl-1,3-thiazol-5-yl)-
3(or 4)-phenylpyrazolo[1,5-a]pyrimidines (12a,b), 
respectively (Scheme  4). The structures of compounds 

(12a,b) were elucidated by elemental analysis, spectral 
data, and an alternate synthetic route. The 1H NMR spec-
trum of (12a) showed signals at δ =  2.59 (s, 3H, CH3), 
2.83 (s, 3H, CH3), 6.53 (s, 1H, pyrazole H-4), 7.13 (d, 
1H, J = 4 Hz, pyrimidine H-5), 7.54–7.92 (m, 5H, ArH’s) 
and 8.74 (d, 1H, 8  Hz, pyrimidine H-6). On the other 
hand, refluxing of 5-acetyl-2,4-dimethylthiazole (9) with 
dimethylformamide-dimethylacetal in boiling dry xylene 
gave the compound 3-(dimethylamino)-1-(2,4-dime-
thyl-1,3-thiazol-5-yl))prop-2-ene-1-one (11) in a good 
yield. Chemical elucidation of compound (11) was con-
firmed by elemental analysis, spectral data, and chemical 
transformation. The 1H NMR spectrum showed signals 
at δ = 2.49 (s, 3H, CH3), 2.78 (s, 3H, CH3), 2.98 (s, 3H, 
CH3), 3.15 (s, 3H, CH3), 5.49–5.54 (d, 1H, J  =  12  Hz, 
CH=CH–N) and 6.90–7.28 (d, 1H, J = 12 Hz, CH=CH–
N). Further reaction of the compound (11) with 3-amino-
4-phenylpyrazole or 3-amino-5-phenyl-1H-pyrazole in a 
mixture of acetic acid and ammonium acetate gave iden-
tical products in all aspects (m.p., mixed m.p., spectra) to 
(12a,b) (Scheme 4).

Finally the treatment of C-ethoxycarbonyl-N-phe-
nylhydrazonoyl chloride [32–35] (13) with compound 
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(11) in refluxing toluene containing triethylamine 
catalyst yielded a new isolable product, which formu-
lated as either ethyl 3-[(2,4-dimethyl-1,3-thiazol-5-yl)
carbonyl]-1-phenyl-pyrazole-4-carboxylate (20a) or ethyl 
3-[(2,4-dimethyl-1,3-thiazol-5-yl)carbonyl]-1-phenyl-
pyrazole-5-carboxylate (21a) (Scheme 5). The structures 
of compounds (20) were elucidated by their spectral, 
elemental analysis and chemical transformation. The 1H 
NMR spectrum of compound (20a) showed a character-
istic signals at δ =  1.22 (t, 3H, CH3, J =  7  Hz), 2.44 (s, 
3H, CH3), 2.69 (s, 3H, CH3), 4.33 (q, 2H, CH2, J = 7 Hz), 
7.44–7.89 (m, 5H, ArH’s) and 8.19 (s, 1H, pyrazole C-5). 
Formation of compounds (20) can be verified via chemi-
cal reaction of nitrilum imide (17), formed in  situ from 
hydrazonoyl halides and triethylamine, with compound 
(11) which afforded the cycloadduct intermediate (18) or 
(19). After elimination of dimethylamine, the pyrazoles 
were obtained as final products (20) or (21). Similarly, 
the appropriate hydrazonoyl halides (14–16) reacted 
with a compound (11) to afford the corresponding pyra-
zoles (20b–d).

Boiling of the appropriate pyrazoles (20a–d) with 
hydrazine hydrate in ethanol yielded Pyrazolo[3,4-d]
pyridazines (22a–c) (Scheme  5). The chemical struc-
tures of compounds (22a–c) were elucidated via elemen-
tal analysis, spectral data and alternative synthesis. The 
1H NMR spectrum of compound (22b) depicted signals 
at δ = 2.46 (s, 3H, CH3), 2.77 (s, 3H, CH3), 3.01 (s, 3H, 
CH3), 7.32–8.11 (m, 5H, ArH’s), 8.76 (s, 1H, pyrazole 
C-5). Alternatively, a new route for the synthesis of the 
compound (22a), the compound (20d) was refluxed with 
hydrazine hydrate in ethanol to give an identical product 
in all aspects (m.p., mixed m.p., and spectra) with com-
pound (22a).

Conclusions
In summary, new and efficient synthetic routes of isoxa-
zoline, pyrrolo[3,4-d]isoxazole-4,6-dione derivatives, 
pyrazoles, pyrazolo[3,4-d]pyridazines and pyrazolo 
[1,5-a] pyrimidines have been achieved, and compu-
tational investigations are in complete agreement with 
experimental. Moreover, the selected newly synthesized 
products were evaluated for their antimicrobial activ-
ity against gram positive and gram negative bacteria as 
well as some fungal-plants. The results revealed all syn-
thesized compounds showed an adequate inhabitory 
efficiency of growth of gram positive and gram negative 
bacteria.

Experimental section
General methods
All melting points were determined on an electrothermal 
apparatus and are uncorrected. IR spectra were recorded 

(KBr discs) on a Shimadzu FT-IR 8201 PC spectropho-
tometer. 1H NMR and 13C NMR spectra were recorded 
in CDCl3 and (CD3)2SO solutions on a Varian Gemini 
300 MHz spectrometer, and chemical shifts are expressed 
as δ using TMS as an internal reference. Mass spectra 
were recorded on a GC–MS QP1000. Elemental analy-
ses were carried out at the Microanalytical Center of 
Cairo University. The hydrazonoyl halides [32–35] and 
hydroximoyl chloride [36] were prepared as previously 
described.

Synthesis of 2‑chloro‑2‑(hydroximino)‑1‑(2,4‑dimethyl)
thiazol‑5‑yl)ethanone (3)
Hydrochloric acid (12  M, 100  ml) was added while stir-
ring to a mixture of 1-(2,4-dimethylthiazol-5-yl)-2-oxodi-
methyl-sulfonium bromide (2) (11.8 g, 0.04 mol), sodium 
nitrite (3.5 g, 0.05 mol) in 1,4-dioxane (50 ml) and water 
(50  ml) at 25  °C. Stirring was continued for 3  h to pro-
duce a pale yellow solid, which was separated by filtra-
tion and recrystallized from ethanol to give (3). Yellow 
solid; Yield (62 %); m.p. 142 °C. IR (KBr) νmax: 3370 (OH), 
3055, 2966 (CH), 1655 (CO conjugated) cm−1; 1H NMR 
(DMSO-d6): 2.47 (s, 3H, CH3), 2.71 (s, 3H, CH3) and 13.18 
(s, 1H, NOH); MS m/z (%): 218 (M+, 100). Anal. Calcd 
for C7H7ClN2O2S (218.66): C, 38.45; H, 3.23; N, 12.81; S, 
14.66; Found: C, 38.43; H, 3.22; N, 12.79; S, 14.64 %.

Synthesis of 3‑[(2,4‑dimethyl‑1,3‑thiazol‑5‑yl)
carbonyl]‑4,5‑dihydroisoxazole‑5‑carbonitrile (5), 
3‑[(2,4‑dmethy‑1,3‑thiazol‑5‑yl)carbonyl]‑4,5‑dihydroisox‑
azole‑5‑carboxamide (6) and 3‑[(2,4‑dimethyl‑1,3‑thi‑
azol‑5‑yl)carbonyl]‑5‑substituted 3aH‑pyrrolo[3,4‑d]
isoxazole‑4,6(5H,6aH)‑dione (8a‑c)
General method
Equimolar amounts of the appropriate (3), acrylonitrile, 
acrylamide or the appropriate N-arylmalemides (7a–c) 
(0.005  mol each) in toluene (30  ml) were heated under 
reflux for 18  h. The solvent was evaporated under vac-
uum and the residual oil was triturated with petroleum 
ether (40–60 °C). The solid products were collected and 
recrystallized from ethanol to give (5, 6) and (8a–c), 
respectively.

Alternative method for synthesis of 3‑[(2,4‑dime‑
thyl‑1,3‑thiazol‑5‑yl)carbonyl]‑4,5‑dihydroisoxazole‑5‑car‑
boxamide (6)
A mixture of 3-[(2,4-dimethyl-1,3-thiazol-5-yl)carbonyl]-
4,5-dihydroisoxazole-5-carbonitrile 5 (0.5  g) and dilute 
sulfuric acid (5 ml) were stirred at room temperature for 
1 h, and then poured onto crushed ice (20 g). The result-
ing solid was collected and recrystallized from ethanol to 
give a product identical in all aspects (m.p., mixed m.p., 
and spectra) with (6).
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3‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑4,5‑dihy‑
droisoxazole‑5‑carbonitrile (5)
Yellow solid; Yield (73  %); m.p. 101  °C. IR (KBr) νmax: 
2916, 2846 (CH), 1665 (CO) cm−1; 1H NMR (DMSO-
d6): 2.57 (s, 3H, CH3) 2.80, (s, 3H, CH3), 2.90–2.94 (d, 

2H, CH2, J =  10  Hz, isoxazoline C-4) and 3.85 (t, 1H, 
J =  10  Hz, isoxazoline C-5); MS m/z (%):234 (M+, 70).
Anal. Calcd for C10 H9N3O2S (235.26): C, 51.05; H, 3.86; 
N, 17.86; S, 13.63; Found: C, 50.80; H, 3.84; N, 17.89; S, 
13.67 %.
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3‑[(2,4‑Dimethy‑1,3‑thiazol‑5‑yl)carbonyl]‑4,5‑dihydroisox‑
azole‑5‑carboxamide (6)
Red solid; yield (66 %); m.p. 168 °C. IR (KBr) νmax: 3350, 
3170 (NH2), 2920, 2856 (CH), 1680 (CO) cm−1; 1H NMR 
(DMSO-d6): 2.46 (s, 3H, CH3), 2.79 (s, 3H, CH3), 3.54–
3.60 (dd, 2H, J = 10.98 Hz), 5.20–5.29 (t, 1H, J = 8.72 Hz), 
5.95 (s, br., 1H), 6.45 (s, br., 1H); MS m/z (%): 253 (M+, 
67).Anal. Calcd for C10 H11 N3 O3 S (253.27): C, 47.42; H, 
4.38; N, 16.59; S, 12.66; found: C, 47.40; H, 4.36; N, 16.61; 
S, 12.68 %.

3‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑5‑phenyl‑3aH‑p
yrrolo[3,4‑d]isoxazole‑4,6(5H,6aH)‑dione (8a)
Yellow solid; yield (76  %); m.p. 150  °C. IR (KBr) νmax: 
2926, 2855 (CH), 1717, 1639 (CO’s), 1638 (C=N) cm−1; 
1H NMR (DMSO-d6): 2.66 (s, 3H, CH3), 2.92 (s, 3H, 
CH3), 5.23–5.24 (d, 1H, J  =  7.4  Hz, isoxazoline C-4), 
5.81–5.88 (d, 1H, J = 7.4 Hz, isoxazoline C-5), 7.22–7.33 
(m, 5H, ArH’s); MS m/z (%): 355 (M+, 77).Anal. Calcd for 
C17 H13 N3 O4 S (355.36): C, 57.46; H, 3.69; N, 11.82; S, 
9.02; found: C, 57.44; H, 3.71; N, 11.84; S, 8.99 %.

3‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑5‑(4‑methylphe
nyl)‑3aH‑pyrrolo[3,4‑d]isoxazole‑4,6(5H,6aH)‑dione (8b)
Yellow solid; yield (80 %); m.p. 156 °C. IR (KBr) νmax: 2923, 
2853 (CH), 1719, 1633 (CO’s), 1637 (C=N) cm−1; 1H NMR 
(DMSO-d6): 2.32 (s, 3H, 4-CH3C6H4), 2.54 (s, 3H, CH3), 
2.89 (s, 3H, CH3), 5.18–5.22 (d, 1H, J = 9.78 Hz, isoxazoline 
C-4), 5.75–5.79 (d, 1H, J = 9.70 Hz, isoxazoline C-5) and 
7.18–7.29 (m, 4H, ArH’s); MS m/z (%): 369 (M+, 90).Anal. 
Calcd for C18 H15 N3 O4 S (369.39): C, 58.53; H, 4.09; N, 
11.38; S, 8.68; found: C, 58.55; H, 4.12; N, 11.40; S, 8.70 %.

3‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑5‑(4‑methoxyp
henyl)‑3aH‑pyrrolo[3,4‑d]isoxazole‑4,6(5H,6aH)‑dione (8c)
Yellow solid; yield (77  %); m.p. 165  °C. IR (KBr) νmax: 
2926, 2918, 2849 (CH), 1716, 1634 (CO’s), 1640 (C=N) 
cm−1; 1H NMR (DMSO-d6): 2.52 (s, 3H, CH3), 2.89 
(s, 3H, CH3), 3.83 (s, 3H, 4-OCH3C6H4), 5.15–5.17 (d, 
1H, J  =  7.34  Hz, isoxazoline C-4), 5.73–5.77 (d, 1H, 
J  =  9.40  Hz, isoxazoline C-5) and 6.95–7.29 (m, 4H, 
ArH’s); MS m/z (%): 385 (M+, 88).Anal. Calcd for C18 
H15 N3 O5 S (385.39): C, 56.10; H, 3.92; N, 10.90; S, 8.32; 
Found: C, 56.12; H, 3.94; N, 10.88; S, 8.34 %.

Synthesis of sodium salt of 3‑hydroxy‑1‑(2,4‑dimethylthia‑
zol‑5‑yl)prop‑2‑en‑1‑one (10), [37]
A mixture of 1-(2,4-dimethylthiazol-5-yl)ethanone (9) 
(1.55 g, 10 mmol) and ethylformate (0.74 g, 10 mmol) in 
dry ether (20 ml) was added portion wise while stirring 
to solution sodium methoxide (0.54  g, 10  mmol) in dry 
ether (10 ml) at 0–5 °C. The resulting solid was collected, 
dried, and was used without purification.

Synthesis of 3‑(dimethylamino)‑1‑(2,4‑dimethyl)(1,3‑thia‑
zol‑5‑yl))prop‑2‑en‑1‑one (11)
A mixture of 1-(2,4-dimethyl-1,3-thiazol-5-yl)ethanone 
(9) (1.55  g, 0.01  mol) and dimethylformamide-dimeth-
ylacetal (1.47  g, 0.01  mol) were refluxed in dry xylene 
(10  ml) for 4  h. The hot solution was evaporated to its 
half volume and then cooled. The resulting solid was col-
lected and recrystallized from ethanol to give (11).

3‑(Dimethylamino)‑1‑(2,4‑dimethyl)(1,3‑thiazol‑5‑yl))
prop‑2‑ene‑1‑one (11)
Yellow solid; yield (69  %); m.p. 103  °C. IR (KBr) νmax: 
2904 (CH) and 1655 (CO conjugated) cm−1; 1H NMR 
(DMSO-d6): 2.49 (s, 3H, CH3), 2.78 (s, 3H, CH3), 2.98 (s, 
3H, =  NCH3), 3.15 (s, 3H, =  NCH3), 5.49–5.54 (d, 1H, 
J = 12 Hz, CH=CH–N) and 6.90–7.28 (d, 1H, J = 12 Hz, 
CH=CH–N); MS m/z (%): 210 (M+, 86).Anal. Calcd 
for C10H14N2OS (210.29): C, 57.11; H, 6.71; N, 13.32; S, 
15.25; found: C, 57.13; H, 6.69; N, 13.34; S, 15.27 %.

Synthesis of 5‑(2,4‑dimethyl‑1,3‑thi‑
azol‑5‑yl)‑2‑phenylpyrazolo[1,5‑a]
pyrimidine (12a) and 5‑(2,4‑dimethyl‑1,3‑thia‑
zol‑5‑yl)‑3‑phenylpyrazolo[1,5‑a]pyrimidine (12b)
Method A
A mixture of the sodium salt (10) (1.26 g, 5 mmol) and 
the appropriate amount of 3-amino-4-phenylpyrazole 
or 3-amino-5-phenylpyrazole (5  mmol) in a solution of 
piperidenum acetate [piperidine (2.5  ml)], water (5  ml), 
and acetic acid (2.5 ml) was heated under reflux for about 
10 min. Then acetic acid (1.5 ml) was added while boil-
ing, and the resulting solid was collected and recrystal-
lized from the appropriate solvents to give (12a) and 
(12b), respectively.

Method B
An equimolar amount of 3-(dimethylamino)-1-(2,4-dime-
thyl)(1,3-thiazol-5-yl))prop-2-ene-1-one (11). (1.05  g,  
5  mmol), the appropriate amount of 3-amino-4-phe-
nylpyrazole or 3-amino-5-phenylpyrazole (5  mmol) and 
ammonium acetate (5 mmol) in acetic acid (10 ml) was 
heated under reflux for 4 h. The resulting solid was col-
lected and recrystallized from the appropriate solvent to 
give products identical in all aspects (m.p., mixed m.p., 
and spectra) with (12a) and (12b).

5‑(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)‑2‑phenylpyrazolo[1,5‑a]
pyrimidine (12a)
Yellow solid; yield (79  %); m.p. 107  °C. IR (KBr) νmax: 
3317 (NH) 3076, 2998 (CH, aromatic and aliphatic), 1628 
(CN), 1343 (CH3) cm−1; 1H NMR (DMSO-d6): 2.59 (s, 
3H, CH3), 2.83 (s, 3H, CH3), 6.53 (s, 1H, pyrazole H-4), 
7.13 (d, 1H, J = 4 Hz, pyrimidine H-5), 7.54–7.92 (m, 5H, 
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ArH’s) and 8.74 (d, 1H, 8 Hz, pyrimidine H-6); MS m/z 
(%): 306 (M+, 48).Anal. Calcd for C17H14N4S (306.38): C, 
66.64; H, 4.61; N, 18.29; S, 10.47; found: C, 66.66; H, 4.63; 
N, 18.31; S, 10.45 %.

5‑(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)‑3‑phenylpyrazolo[1,5‑a]
pyrimidine (12b)
Red solid; Yield (69 %); m.p. 109 °C. IR (KBr) νmax: 3315 
(NH), 3057, 2996 (CH, aromatic and aliphatic), 1624 
(CN), 1343 (CH3) cm−1; 1H NMR (DMSO-d6): 2.56 
(s, 3H, CH3), 2.84 (s, 3H, CH3), 7.14 (d, 1H, J =  4  Hz, 
pyrimidine H-5), 7.56–7.78 (m, 5H, ArH’s), 8.74 (d, 1H, 
J = 8 Hz, pyrimidine H-6 and 9.05 (s, 1H, pyrazole H-3); 
MS m/z (%): 306 (M+, 44).Anal. Calcd for C17H14N4S 
(306.38): C, 66.64; H, 4.61; N, 18.29; S, 10.47; found: C, 
66.63; H, 4.63; N, 18.27; S, 10.46 %.

Synthesis of 1‑phenyl‑4‑(2,4‑dimethyl)thiazol‑5‑yl‑3‑ 
substituted pyrazoles (20a–d), [38]
Equimolar amounts of each of (11) and the appropriate 
hydrazonoyl halides (13–16) (0.005  mol) were refluxed 
in dry toluene containing triethylamine for 3 h. The hot 
solution was filtered off and the filtrate was evaporated 
and triturated with petroleum ether (40–60  °C). The 
resulting solid was collected and crystallized from etha-
nol to give (20a–d), respectively.

Ethyl 4‑[(2,4‑dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑1‑ 
phenyl‑1H‑pyrazole‑3‑carboxylate (20a)
Yellow solid; yield (73  %); m.p. 140  °C. IR (KBr) νmax: 
3450 (NH), 3088, 2996 (CH), 1674 (CO) and 1597 (C=C) 
cm−1; 1H NMR (DMSO-d6): 1.22 (t, 3H, CH3, J = 7 Hz), 
2.44 (s, 3H, CH3), 2.69 (s, 3H, CH3), 4.33 (q, 2H, CH2, 
J  =  7  Hz), 7.44–7.89 (m, 5H, ArH’s) and 8.19 (s, 1H, 
pyrazole C-5); MS m/z (%): 355 (M+, 56).Anal. Calcd for 
C18H17N3O3S (355.41): C, 60.83; H, 4.82; N, 11.82; S, 9.02; 
found: C, 60.85; H, 4.80; N, 11.84; S, 9.15 %.

1‑{4‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑1‑ 
phenyl‑1H‑pyrazol‑3‑yl}ethanone (20b)
Yellow solid; yield (70  %); m.p. 119  °C. IR (KBr) νmax: 
3039, 2985 (CH), 1648 (CO conjugated) and 1599 (C=C) 
cm−1; 1H NMR (DMSO-d6): 2.57 (s, 3H, CH3), 2.69 (s, 
3H, CH3), 2.78 (s, 3H, CH3), 7.15–7.75 (m, 5H, ArH’s) 
and 8.21 (s, 1H, pyrazole C-5); MS m/z (%): 325 (M+, 60).
Anal. Calcd for C17H15N3O2S (325.38): C, 62.75; H, 4.65; 
N, 12.91; S, 9.85; found: C, 62.77; H, 4.66; N, 12.89; S, 
9.87 %.

(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)[1‑phenyl‑3‑ 
(phenylcarbonyl)‑1H‑pyrazol‑4‑yl]methanone (20c)
Yellow solid; Yield (78  %); m.p. 157  °C. IR (KBr) νmax: 
3058, 2919 (CH), 1645 (CO conjugated) and 1598 (C=C) 

cm−1; 1H NMR (DMSO-d6): 2.44 (s, 3H, CH3), 2.7 (s, 3H, 
CH3), 7.21–8.11 (m, 10H, ArH’s) and 8.31 (s, 1H, pyra-
zole C-5); MS m/z (%): 387 (M+, 80). Anal. Calcd for C22 
H17N3O2S (387.45): C, 68.20; H, 4.42; N, 10.85; S, 8.28; 
found: C, 68.22; H, 4.40; N, 10.87; S, 8.30 %.

4‑[(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)carbonyl]‑N,1‑diphenyl‑ 
1H‑pyrazole‑3‑carboxamide (20d)
Pale yellow solid; yield (79 %); m.p. 190 °C. IR (KBr) νmax: 
3438 (NH), 3065, 2993 (CH), 1677 (CO) and 1595 (C=C) 
cm−1; 1H NMR (DMSO-d6): 2.48 (s, 3H, CH3), 2.79 (s, 
3H, CH3), 7.13–7.87 (m, 10H, ArH’s), 8.35 (s, 1H, pyra-
zole C-5) and 10.71 (s, 1H, NH); MS m/z (%): 402 (M+, 
73).Anal. Calcd for C22H18N4O2S (402.46): C, 65.65; H, 
4.51; N, 13.92; S, 7.97; found: C, 65.67; H, 4.49; N, 13.90; 
S, 7.99 %.

Synthesis of pyrazolo[3,4‑d]pyridazines (22a–c), [38]
An appropriate amount of substituted pyrazole (20a-d). 
(0.5  g) and hydrazine hydrate (1  ml) in ethanol (15  ml) 
was refluxed for 1 h. The resulting solid was collected and 
recrystallized from ethanol to give the pyrazolo[3,4-d]
pyridazines (22a-c).

4‑(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)‑2‑phenyl‑2H‑ 
pyrazolo[3,4‑d]pyridazin‑7‑ol (22a)
Yellow solid; yield (78 %); m.p. 243 °C. IR (KBr) νmax: 3450 
(NH), 3088, 2996 (CH), 1674 (CO) and 1597 (C=C) cm−1; 
1H NMR (DMSO-d6): 2.45 (s, 3H, CH3), 2.72 (s, 3H, CH3), 
7.22–8.12 (m, 5H, ArH’s), 8.54 (s, 1H, pyrazole C-5) and 
10.11 (s, 1H, NH); MS m/z (%): 323 (M+, 50).Anal. Calcd 
for C16H13N5OS (323.37): C, 59.43; H, 4.05; N, 21.66; S, 
9.92; found: C, 59.45; H, 4.15; N, 21.64; S, 9.90 %.

4‑(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)‑7‑methyl‑2‑phenyl‑2H‑ 
pyrazolo[3,4‑d]pyridazine (22b)
Yellow solid; yield (75  %); m.p. 190  °C. IR (KBr) νmax: 
3045, 2991 (CH) and 1587 (C=C) cm−1; 1H NMR 
(DMSO-d6): 2.46 (s, 3H, CH3), 2.77 (s, 3H, CH3), 3.01 
(s, 3H, CH3), 7.32–8.11 (m, 5 H, ArH’s) and 8.76 (s, 1H, 
pyrazole C-5); MS m/z (%): 321 (M+, 55). Anal. Calcd for 
C17H15N5S (321.39): C, 63.53; H, 4.70; N, 21.79; S, 9.98; 
found: C, 63.55; H, 4.72; N, 21.81; S, 10.00 %.

4‑(2,4‑Dimethyl‑1,3‑thiazol‑5‑yl)‑2,7‑diphenyl‑2H‑ 
pyrazolo[3,4‑d]pyridazine (22c)
Yellow solid; yield (83 %); m.p. 204 °C. IR (KBr) νmax: 3055, 
2958 (CH) and 1594 (C=C) cm−1; 1H NMR (DMSO-d6): 
2.44 (s, 3H, CH3), 2.89 (s, 3H, CH3), 7.23–8.75 (m, 10 H, 
ArH’s) and 8.81(s, 1H, pyrazole C-5); MS m/z (%): 383 
(M+, 63). Anal. Calcd for C22 H17N5S (383.46): C, 68.91; 
H, 4.47; N, 18.26; S, 8.36; found: C, 68.89; H, 4.49; N, 
18.28; S, 8.38 %.
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Antimicrobial activity
The synthesized compounds were tested for their antimi-
crobial activity against gram positive and gram negative 
bacteria as well as some fungal-plants. The sensitivity of 
the selected microorganisms towards the compounds 
under investigation was determined in vitro culture dis-
solved in chloroform, Appling the filter paper and hole 
plate method [39]. The sterile filter paper disc was satu-
rated with 10 μL of 0.5 mg ml−1 w/v solution of the com-
pound under investigation in DMF. A comparative study 
of the biological activity of these compounds with Ampi-
cillin and tetracycline is compiled in Table 3. Generally, 
all synthesized compounds showed an adequate inhab-
itory efficiency of growth of gram positive and gram neg-
ative bacteria.

Abbreviations
m.p.: melting point; CNS: the central nervous system; 13DC: 1,3-dipolar 
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