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Cytotoxic activity of triazole-containing alkyl
β-D-glucopyranosides on a human T-cell
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Abstract

Background: Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw
materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals,
detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the
underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated.

Results: We synthesized a series of triazole-linked (fluoro)alkyl β-glucopyranosides using the copper-catalyzed
azide-alkyne reaction, one of many popular “click” reactions that enable efficient preparation of structurally diverse
compounds, and investigate the toxicity of this novel class of surfactant in the Jurkat cell line. Similar to other
carbohydrate surfactants, the cytotoxicity of the triazole-linked alkyl β-glucopyranosides was low, with IC50 values
decreasing from 1198 to 24 μM as the hydrophobic tail length increased from 8 to 16 carbons. The two alkyl
β-glucopyranosides with the longest hydrophobic tails caused apoptosis by mechanisms involving mitochondrial
depolarization and caspase-3 activation.

Conclusions: Triazole-linked, glucose-based surfactants 4a-g and other carbohydrate surfactants may cause
apoptosis, and not necrosis, at low micromolar concentrations via induction of the intrinsic apoptotic cascade;
however, additional studies are needed to fully explore the molecular mechanisms of their toxicity.
Background
Carbohydrate surfactants are an important class of sur-
factants that can be produced from renewable raw mate-
rials (e.g., starch, cellulose, hemicellulose, etc.) and are
considered to be environmentally safe. Because of their
interesting interfacial properties, carbohydrate surfac-
tants with hydrocarbon tails are useful for a broad range
of applications, such as pharmaceuticals, detergents,
agrochemicals, food and personal care products [1-3].
Carbohydrate surfactants with partially fluorinated tails
are of particular interest for biomedical applications,
* Correspondence: raguilera@utep.edu; hans-joachim-lehmler@uiowa.edu
†Equal contributors
2Cytometry, Screening and Imaging Core Facility, Border Biomedical Research
Center, Department of Biological Sciences, Bioscience Research Building,
University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968,
USA
4Department of Occupational and Environmental Health, The University of
Iowa, UI Research Park, Iowa City, IA 52242, USA
Full list of author information is available at the end of the article

© 2015 Oldham et al.; licensee Springer. This
Attribution License (http://creativecommons.
reproduction in any medium, provided the o
Dedication waiver (http://creativecommons.o
unless otherwise stated.
including blood substitutes and pulmonary drug delivery
[4-7]. One feature of carbohydrate surfactants is the
availability of an incredible number of structural motifs,
including varied head groups, hydrophobic tails and
linkers [2]. For example, the polar head group of carbo-
hydrate surfactants can contain one or more mono- to
polysaccharide moieties; be cyclic or linear; or differ in
the stereochemistry of the hydroxyl groups. Further-
more, the carbohydrate head group can be linked by a
variety of approaches, for example glycosylation, esterifi-
cation and etherification, and using different linkers to
one or more hydrophobic tails.
The copper-catalyzed azide-alkyne cycloaddition

(CuAAC) [8] between an azide and an alkyne repre-
sents an attractive and straightforward approach to
link a polar carbohydrate headgroup and a hydrophobic
tail. Indeed, a considerable number of carbohydrate
surfactants containing a 1,2,3-triazole linker have been
described, including simple alkyl xylopyranoside [9] and
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glucopyranoside surfactants [10], structurally more com-
plex glucose and maltose-based conjugates [11-14], alkyl
and aryl O-xylosides and O-xylobiosides [15], 6-triazole-
linked galacto- or glucolipids [16], branched fluorinated
amphiphiles [17], bolaform surfactants with glucose,
galactose and lactose head groups [18], mannitol-based
gemini surfactants [19], and “star-like” carbohydrate
surfactants [20]. Many triazole-linked carbohydrate sur-
factants can be synthesized by the reaction of a carbo-
hydrate group containing an azide group with a suitable
alkyne derivative, such as alkynes [18] or propargyl de-
rivatives of alcohols [12,14] and fatty acids [11,13,16].
Alternatively, a carbohydrate group with a propargyl
group can be reacted with alkyl azides to yield the desired
triazole-linked carbohydrate surfactants [9,10,15,18,19].
The synthesis and physicochemical properties of

carbohydrate surfactants have been investigated in
considerable depths [3,21,22]. However, only limited
structure-toxicity relationships of carbohydrate surfac-
tants in general and triazole-liked carbohydrate surfac-
tants in particular have been reported in mammalian
systems. Typically, carbohydrate surfactants display
low toxicity in cells in culture, with IC50 values in the
micro- to millimolar concentration range [4-7,9,13,23-29].
For example, we observed IC50 values ranging from 26
to 890 μM for a series of triazole-linked alkyl β-D-
xylopyranosides in several mammalian cell lines, with
Scheme 1 (A) Synthesis of triazole-containing alkyl β-D-glucopyranos
abbreviations of reference surfactants used in the cell culture studies
heptyl-β-D-glucopyranoside; β-OTG, 1-S-octyl-β-D-thioglucopyranoside; C14
the Jurkat cell line being the most sensitive cell line [9].
Despite the potential use of carbohydrate surfactants in
food and personal care products and biomedical appli-
cations, the mechanisms underlying the cytotoxicity of
carbohydrate surfactants have not been explored sys-
tematically to date. Because of the potentially broad appli-
cation of the triazole-linker in the synthesis of structurally
diverse carbohydrate surfactants, we prepared a series of
triazole-linked alkyl β-D-glucopyranosides with hydro-
carbon and partially fluorinated hydrophobic tails, and
performed a preliminary investigation of possible me-
chanisms of their toxicity in comparison to other carbohy-
drate surfactants in the Jurkat cell line.

Results and discussion
Synthesis of triazole-linked alkyl glucopyranosides
The synthesis of the desired glucose-based surfactants
was analogous to our previously published synthesis of
triazole-containing alkyl β-D-xylopyranosides [9]. These
alkyl β-D-xylopyranosides contained a triazole ring in-
corporated through the CuAAC reaction [8], and pos-
sessed surface-active properties. This approach utilizes
the ability of this so-called “click” reaction to quickly
prepare a series of related molecules. Briefly, the synthesis
began with a β-selective glycosylation of commercially-
available β-D-glucose pentaacetate (Scheme 1A). This
strategy was chosen to yield anomerically pure surfactants,
ides using the CuAAC reaction; (B) Chemical structure and
. 5, (1-octyl-1H-1,2,3-triazol-4-yl)methyl β-D-xylopyranoside; C7G1,
G1, tetradecyl-β-D-glucopyranoside.
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as previous work has suggested the β-alkyl anomers may
be more biocompatible [29]. Glycosylation with propargyl
alcohol under Lewis-acid-promoted conditions afforded 2
as the β-anomer [30]. The CuAAC reaction between 2
and alkyl azides, which can easily be prepared from the
corresponding alkyl bromides or iodides [31], was carried
out using 0.1 equiv CuSO4 and 0.2 equiv sodium ascorbate
in aqueous tert-butanol to generate 3a–g [8]. In the last
step the acetate protecting groups were removed with so-
dium methoxide, followed by neutralization with Dowex
50 W× 8–100 ion exchange resin to yield the triazole-
linked surfactants 4a-g. The final products were purified
by recrystallization and provided satisfactory elemental
analysis. 1H NMR spectroscopy confirmed the anomeric
stereochemistry; the only previously reported synthesis of
4a-e used a Fisher glycosylation which resulted in a mix-
ture of α and β anomers [10]. Overall, the synthetic ap-
proach outlined in Scheme 1 offers a facile approach to a
large range of novel carbohydrate surfactants with well-
defined stereochemistry at the anomeric carbon.

In vitro cytotoxicity of triazole-containing alkyl xyloside
surfactants
Biocompatibility studies using mammalian cells in cul-
ture suggests that many carbohydrate surfactants with
hydrocarbon and partially fluorinated hydrophobic tails
are relatively non-toxic in vitro, with no cytotoxicity ob-
servable even at millimolar concentrations for some
surfactants [4-7,9,13,16,23-29]. Growing experimental
evidence suggests that many of these surfactants cause
cell death by a mechanism involving apoptosis, not necro-
sis [9,23,25]. Here, we initially investigated the cytotoxicity
of a series of seven triazole-containing alkyl glucopyrano-
sides surfactants 4a-g (Scheme 1) with the MTS ([3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium]) assay in the Jurkat cell
line and, subsequently, explored possible mechanisms by
which they cause cytotoxicity. Four structurally related
carbohydrate surfactants (Scheme 1B) were also included
in our initial cytotoxicity screening to facilitate the com-
parison with earlier studies [9,23-25].
The IC50 values of the triazole-containing alkyl β-D-

glucopyranoside surfactants 4a-e decreased with increasing
Table 1 IC50 values of hydrocarbon and fluorocarbon triazole
Jurkat cellsa

Compound Alkyl β-D-glucopyranosidesb

4a 4b 4c 4d 4e

Hydrophobic tail C8H17 C10H21 C12H25 C14H29 C16H33

IC50 value [μM] 1198 171 89 53 24
aThe inhibitory concentration 50% (IC50) in μM is defined as the concentration of ex
formazan, as compared with the absorbance produced by untreated cells after 16 h
bPlease see Scheme 1 for the chemical structures and corresponding abbreviations
*Cytotoxicity was <50% at the highest compound concentration tested (2000 μM) a
alkyl chain length (Table 1), i.e., their cytotoxicity increased
with increasing chain-length. Similarly, the cytotoxicity
of structurally related, hydrocarbon based carbohydrate
surfactants, such as triazole-containing alkyl β-D-
xylopyranosides, alkyl β-D-xylopyranosides, alkyl α- and
β-D-glactopyranosides, alkyl α- and β-D-glucopyrano-
side surfactants, and 6-triazole-linked galacto- or gluco-
lipids, increases from short to medium hydrophobic
tails [9,16,23-25,29]. One likely explanation for this effect
is an increased partitioning of the carbohydrate surfactants
into the cell with increasing length of the hydrophobic tail.
As a result, the intracellular concentration of homologous
carbohydrate surfactants and, thus, their cytotoxicity in-
creases as a function of hydrophobic tail length. Consist-
ent with this observation, we have shown that the
apparent membrane partitioning coefficient of carbohy-
drate surfactants is proportional to the hydrophobic tail
length [24]. Unlike hydrocarbon surfactants 4a-e, many
other carbohydrate surfactants investigated to date display
a “cut-off” effect [32], i.e., carbohydrate surfactants with a
long hydrophobic tail show a decrease in the cytotoxicity
relative to medium length surfactant [9,23-25,29]. For ex-
ample, triazole-containing alkyl β-D-xylopyranosides dis-
played large IC50 values for short chain (hexyl) and long
chain surfactants (tetradecyl and hexadecyl), whereas the
medium chain alkyl β-D-xylopyranosides (decyl and dode-
cyl) were the most toxic compounds in this series of sur-
factants [9]. Although we did not investigate longer
hydrophobic tails due to the poor aqueous solubility of the
corresponding surfactant (i.e., > hexadecyl), we propose
that triazole-containing alkyl β-D-glucopyranoside surfac-
tants 4 would display a “cut-off” effect for surfactants
with long hydrophobic tails. The structure-dependent
factors likely involved the “cut-off” effect, such as lipid
and water solubility, critical aggregate concentration,
binding to proteins in the cell and cell culture medium,
and diffusion through the cell membrane, are poorly
understood and warrant further investigation [32,33].
Comparison of the IC50 values of the triazole-containing

alkyl β-D-glucopyranosides surfactants 4 with structurally
related surfactants reveals interesting structure-toxicity re-
lationships (Table 1). For example, the IC50 values of the
alkyl β-D-glucopyranosides C14G1 is comparable to the
-linked alkyl β-D-glucopyranosides 4a-g tested on

Control surfactantsb

4f 4g 5 C14G1 β-OTG C7G1

C2H4C6F13 C2H4C8F17 C8H17 C14H29 C8H17 C7H15

* * 663 67 163 *

perimental compound required to inhibited 50% of the conversion of MTS to
of incubation.
for the alkyl β-D-glucopyranosides and the control surfactants.
nd therefore their IC50 values could not be determined.



Figure 1 Triazole-containing alkyl β-D-glucopyranosides 4d and
4e and alkyl β-D-glucopyranosides C14G1 induced significant
phosphatidylserine externalization in the Jurkat cell line. The
mode of cell death induction, apoptosis or necrosis, was monitored
via flow cytometric assay after co-staining of cells with Annexin V-FITC
and PI. Cells were exposed to the ~ IC50 concentration of each com-
pound as determined by MTS assay (see Table 1). The total percentage
of apoptotic cells is expressed as the sum of percentages of both early
and late stages of apoptosis (Annexin V-FITC positive; white bars), with
green fluorescence signal. Cells that were stained only with PI due to
the loss of plasma membrane integrity, but without FITC signal, are
considered necrotic cells (gray bars). Analysis of the apoptotic
populations using the two-tailed Student's paired t-test of 4d, 4e and
C14G1-treated Jurkat cells against DMSO and untreated controls was
P < 0.001 (*). Each bar represents the average of three independent
measurement values, and error bars represent the standard deviation
of the mean. Unt refers to untreated cells.
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IC50 values of the structurally related triazole-containing
alkyl glucoside 4d. This observations is consistent with
our earlier findings that the triazole-linker does not mark-
edly affect the cytotoxicity of triazole-containing alkyl
xyloside [9] and the more general expectation that the
introduction of a carbohydrate group renders drug mole-
cules containing a triazole group less cytotoxic [34]. In
contrast, the triazole-containing octyl glucoside com-
pound 4a appeared to be more toxic compared to its
structural analogue, C7G1, with IC50 values of 1198 μM
and > 2,000 μM, respectively. It is also interesting to note
that the IC50 value of the triazole-containing octyl xyloside
5 was significantly lower compared to its structural gluco-
side analog 4a, indicating that xyloside-based surfactants
are more cytotoxic compared to glucose-based surfac-
tants. This observation is remarkable because xylose and
glucose differ only by a single hydroxymethyl group, but
otherwise have the same stereochemistry in the pyranose
ring system.
Consistent with this observation, we have previously

reported that small changes in the structure of the car-
bohydrate head group of a surfactant can influence its
toxicity [24]. Simple hexadecyl and octadecyl glucopy-
ranoside surfactants, but not structurally related galac-
toside surfactants caused cytotoxicity at low millimolar
concentrations in the B16F10 mouse melanoma cell line.
A similar observation has been reported for partially
fluorinated gluco- vs. galactopyranoside in the B16 mel-
anoma cell line [28] and for 6-triazole-linked galacto- or
glucolipids in the A549 human lung adenocarcinoma
epithelial cell line [16]. Moreover, there is some evidence
that the configuration at the anomeric center may play a
role in the cytotoxicity of carbohydrate surfactants in
different cancer cell lines [29]; however this effect of the
stereochemistry on the anomeric center has not been
observed in all studies [24], possibly due to differences
in the carbohydrate surfactants, cell lines and/or experi-
mental conditions employed. Since the stereochemistry
of hydroxyl groups of some surfactants, such as uronic
acid-based surfactants, is known to drastically alter their
physicochemical properties [35,36], it is possible that
small changes in the stereochemistry of the polar head-
group result in differences in the cytotoxicity by either
indirectly altering physicochemical properties of ma-
cromolecular structures, such as the cell membrane,
and/or direct interaction with cellular targets.
The two partially fluorinated surfactants 4f (F-octyl)

and 4g (F-decyl) displayed no cytotoxicity in the Jurkat
cell line over the entire concentration range investigated
(8 μM to 2 mM). The hydrocarbon surfactant 4a, which
is the structural analog of partially fluorinated surfactant
4g, displayed low toxicity in the Jurkat cell line, with an
IC50 value of 1,198 μM. Similarly, many other studies
have reported that the introduction of a perfluoroalkyl
group in a hydrocarbon surfactant is typically protect-
ive and significantly decreases its cytotoxicity in mam-
malian cells in culture [5-7,9,24,25,27,28]. However, a
perfluoroalkyl group in the hydrophobic tail is not
always protective, as we have shown for octyl versus
F-octyl β-D-xylopyranosides [23]. These differences in
the cytotoxicity of hydrocarbon and partially fluori-
nated carbohydrate surfactants likely reflect differences
in the physicochemical properties of the respective
carbohydrate surfactant caused by the introduction of
varying degrees of fluorination in the hydrophobic tail.

Annexin V/PI apoptosis/necrosis assay
Our previous studies demonstrate that structurally di-
verse carbohydrate surfactants, including triazole-linked
alkyl β-D-xylopyranosides cause cytotoxicity by apop-
tosis and not necrosis [9,23,25]. We therefore assessed
whether triazole-linked alkyl β-D-glucopyranosides 4d
(tetradecyl) and 4e (hexadecyl) cause cytotoxicity by apop-
tosis or necrosis. Because phosphatidylserine translocation
from the inner leaflet to the outer membrane is an early
event in apoptotic cell death [37], Annexin V-FITC, which
has a high affinity for phosphatidylserine, was used to de-
tect phosphatidylserine as a marker of apoptosis in live-
cells by flow cytometry. As can be seen in Figure 1, a
significant amount of phosphatidylserine is externalized
when Jurkat cells were treated with the tetradecyl gly-
copyranoside C14G1 (~65%), while treatment with 4d
and 4e resulted in lower (<20%) but significant Annexin-V



Figure 2 Mitochondrial depolarization mediated by triazole-
containing alkyl β-D-glucopyranosides 4d and 4e and alkyl
β-D-glucopyranosides C14G1. Jurkat cells were treated with
triazole-containing alkyl β-D-glucopyranosides 4d and 4e and alkyl
β-D-glucopyranosides C14G1 at their respective IC50 concentration
and incubated for 6 h. Changes in the mitochondrial ΔΨm was
determined by staining with 2 μM of JC-1. The IC50 concentration
values that were used were the following: 4d = 53 μM; 4e = 24 μM;
and C14G1 = 66.5 μM. After dissipation of ΔΨm, the JC-1 reagent
emits a green fluorescence signal, while the compound in a polari-
zedmitochondrial membrane emits a red signal. Percentages of cells
emitting green fluorescence signal (y-axis) are depicted. Each bar
represents the mean ± SD of four independent replicates. The
following controls were included: untreated cells as a negative
control; cells treated with 0.1% v/v DMSO as a control for solvent
effects; and cells exposed to 1 mM H2O2 as a positive control.
Approximately 1x104 flow cytometry events were acquired and
analyzed per sample using CXP software.

Figure 3 Treatment of Jurkat cells with triazole-containing alkyl
β-D-glucopyranosides 4d and 4e and alkyl β-D-glucopyranosides
C14G1 resulted in caspase-3 activation. Jurkat cells were treated
with compounds at their respective IC50 concentration. The
percentage of cells with activated caspase-3 as determined by
emission of green fluorescence signal is indicated on y axis. Each bar
represents average of three independent measurement values, and
error bars their corresponding SD values. Data were analyzed using
the two-tailed Student's paired t-test of compound treated cells vs.
DMSO treated cells with P-values within statistically significant range
of P < 0.0001 (*) and P < 0.008 (†).
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staining after a 16 h incubation. These findings demon-
strate that, similar to other carbohydrate surfactants,
triazole-linked alkyl glucopyranosides 4d and 4e cause
apoptosis in the Jurkat cell line.

Surfactant-mediated cytotoxicity involves a mitochondria-
dependent apoptosis pathway
Apoptosis can be caused by the activation of cysteine-
aspartic acid proteases (caspases) through an intrinsic,
mitochondria-mediated pathway or an extrinsic pathway
involving cellular death receptors, such as FAS/CD95 or
tumor necrosis factor receptor 1 (TNFR1). To gain fur-
ther insights into the mechanisms involved in carbohy-
drate surfactant-mediated apoptosis, we investigated the
dissipation of mitochondrial membrane potential (ΔΨm),
an early facet in apoptosis that has been implicated in ini-
tiating the intrinsic pathway [38]. Briefly, Jurkat cells were
treated for 6 h with carbohydrate surfactants 4d, 4e or
C14G1, stained with the fluorophore 5,5',6,6'-tetrachloro-
1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide
(JC-1) and analyzed via flow cytometry [39,40]. Re-
sults indicated that 4d and C14G1 compounds provoked
preferential accumulation of JC-1 monomers (green), an
indicator of mitochondrial depolarization, and interfered
with the formation of JC-1 aggregates (red) (Figure 2). A
similar distribution pattern was observed in cells treated
with the positive control, H2O2. The most potent com-
pound causing mitochondrial depolarization was C14G1
followed by 4d. These outcomes suggest that 4d- and
C14G1-mediated cytotoxicity is initiated via ΔΨm
depolarization, involving the intrinsic apoptotic pathway
in the initiation of cell death. In contrast, 4e-mediated
toxicity appeared to circumvent ΔΨm dissipation to in-
duce cell death.

Surfactants inflict cytotoxicity via caspase-3 activation
Caspase-3 is activated by both the intrinsic and extrinsic
apoptotic pathways. To examine whether caspase-3 acti-
vation was involved in the cytotoxicity provoked by the
selected experimental compounds, a cell permeable fluo-
rogenic reagent, NucView 488 Caspase-3 substrate, and
Jurkat cells were utilized. This substrate allows the de-
tection of caspase-3 activity in live cells via flow cytome-
try. Jurkat cells with active caspase-3 were significantly
detected after 6 h of incubation with 4d, 4e and alkyl
β-D-glucopyranoside C14G1, as compared with un-
treated and solvent controls (DMSO; P < 0.001; Figure 3)
[39,40]. The most efficient carbohydrate surfactant eli-
citing caspase-3 activation was C14G1 (Figure 3). These
observations suggest that the cytotoxicity induced by
4d, 4e and C14G1was indeed mediated via apoptosis as
initially detected by phosphatidylserine externalization
and corroborated by caspase-3 activation; both hall-
marks of apoptosis.
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Experimental
General procedures
The 1H and 13C NMR spectra were recorded on a
Bruker DRX 400 Digital NMR spectrometer. 19F spectra
were recorded using a Bruker Avance 300. NMR assign-
ments were determined from a COSY spectrum of 3b.
Representative 1H and 13C NMR spectra are included in
Additional file 1. High resolution mass spectra were ob-
tained at the University of California, Riverside Mass
Spectrometry facility. Elemental analyses were obtained
from Atlantic Micro Lab Microanalysis Service (Atlanta,
Georgia, USA). All reactions were monitored by thin
layer chromatography, followed by visualization with UV
and anisaldehyde-H2SO4. Azides were prepared using a
known method [31] and used without further purification.
β-Propargyl 2,3,4,6-tetra-O-acetylglucopyranoisde was
prepared from commercially available β-D-glucopyrano-
side pentaacetate as previously described. Compounds
3a-e and 4a-e have been reported in the literature [10].
Tetradecyl β-D-glucopyranoside (C14G1) was prepared
as previously described [24]. 1-S-Octyl-β-D-thiogluco-
pyranoside (β-OTG), propargyl alcohol and Dowex®
50W × 8-100 ion exchange resin were obtained from
Acros Organics/Fisher Scientific (Pittsburgh, PA). Boron
trifluoride diethyl ethereate and sodium methoxide were
obtained from Alfa Aesar (Ward Hill, MA). Sodium azide
and sodium ascorbate were obtained from Aldrich (St.
Louis, MO). Cupric sulfate pentahydrate was obtained
from Mallinckrodt (St. Louis, MO). All organic solvents
were reagent grade or higher and were used without fur-
ther purification. Flash chromatography was performed
using 60 Å (40-63 μm, 230x400 mesh) silica gel.

General procedure for the CuAAC reaction
Triacetyl propargyl glucose (2) and n-alkyl azide (1.0 –
1.1 eq.) were combined with 2:1 tert-butanol: water (0.33 M)
at room temperature. Sodium ascorbate (0.2 eq., 1.0 M in
water) was added, followed by CuSO4 pentahydrate (0.1 eq.,
75 mg/mL in water), and the mixture stirred at room
temperature for 90 minutes. At this time the reactions
often became homogeneous and faint blue. The reac-
tion mixture was diluted with water and extracted three
times with ethyl acetate. The combined extracts were
washed with brine, dried over MgSO4 and concentrated.
The crude residue was purified by silica gel column chro-
matography (hexanes/EtOAc), or used without further
purification.

(1-Octyl-1H-1,2,3-triazol-4-yl)methyl 2,3,4-tri-O-acetyl-β-
glucopyranoside (3a)
The general procedure was used with propargyl glucose
(512 mg, 1.32 mmol) and 1-azidooctane (208 mg, 1.32
mmol); after column chromatography using EtOAc:
hexanes (2:1, v/v), 636 mg (89%) of 3a were obtained as
a clear oil which solidified upon standing. 1H NMR
(CDCl3, 400MHz): δ 7.49 (s, 1H, triazole-CH), 5.18
(app t, J = 9.4 Hz, 1H, H-3), 5.08 (app t, J = 9.9 Hz, 1H,
H-4), 4.99 (dd, J = 9.5, 8.0 Hz, 1H, H-2), 4.92 (d, J = 12.6
Hz, 1H, H-1’a), 4.80 (d, J = 12.6 Hz, 1H, H-1’b), 4.66 (d,
J = 7.9 Hz, 1H, H-1), 4.32 (t, J = 7.3 Hz, 2H, H-α), 4.26
(dd, J = 12.3, 4.8 Hz, 1H, H-6a), 4.14 (dd, J = 12.3, 2.3
Hz, 1H, H-6b), 3.72 (ddd, J = 9.9, 4.6, 2.3 Hz, 1H, H-5),
2.07 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.98 (s, 3H, OAc),
1.96 (s, 3H, OAc), 1.84 - 1.91 (m, 2H, H-β), 1.15 - 1.37
(m, 10H, 5 × CH2), 0.85 (t, J = 6.5 Hz, 3H, H-ω); 13C
NMR (CDCl3, 100 MHz): δ 170.6, 170.2, 169.4, 169.3,
144.0, 122.5, 99.7, 72.7, 71.8, 71.1, 68.1, 63.0, 61.7,
50.4, 31.6, 30.2, 29.0, 28.8, 26.4, 22.5, 20.7, 20.61, 20.56
(2 × C), 14.0; HRESIMS calcd for C25H40N3O10 (M +H)+:
542.2708; found: 542.2710.

(1-Decyl-1H-1,2,3-triazol-4-yl)methyl 2,3,4-tri-O-acetyl-β-
glucopyranoside (3b)
The general procedure was used with propargyl glucose
(507 mg, 1.31 mmol) and 1-azidodecane (240 mg, 1.31
mmol); after column chromatography using EtOAc:hex-
anes (2:1, v/v), 669 mg (90%) of 3b were obtained as a
waxy solid. 1H NMR (CDCl3, 400MHz): δ 7.50 (s, 1H,
triazole-CH), 5.19 (app t, J = 9.4 Hz, 1H, H-3), 5.09 (app t,
J = 9.8 Hz, 1H, H-4), 5.01 (dd, J = 9.5, 8.0 Hz, 1H, H-2),
4.93 (d, J = 12.5 Hz, 1H, H-1’a), 4.82 (d, J = 12.5 Hz, 1H,
H-1’b), 4.68 (d, J = 8.0 Hz, 1H, H-1), 4.33 (t, J = 7.3 Hz,
2H, H-α), 4.27 (dd, J = 12.3, 4.8 Hz, 1H, H-6a), 4.15 (dd,
J = 12.3, 2.3 Hz, 1H, H-6b), 3.73 (ddd, J = 9.9, 4.7, 2.3
Hz, 1H, H-5), 2.09 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99
(s, 3H, OAc), 1.98 (s, 2H, OAc), 1.84 - 1.94 (m, 2H, H-β),
1.18 - 1.37 (m, 14H, 7 × CH2), 0.87 (t, J = 6.5 Hz, 3H,
H-ω); 13C NMR (CDCl3, 100 MHz): δ 170.5, 170.0,
169.3, 169.2, 143.3, 122.4, 99.5, 72.7, 71.8, 71.1, 68.2,
62.9, 61.7, 50.3, 31.7, 30.2, 29.35, 29.25, 29.1, 28.9, 26.4,
22.5, 20.6, 20.53, 20.47 (2 × C), 14.8; HRESIMS calcd
for C27H44N3O10: 570.3021; found: 570.3034.

(1-Dodecyl-1H-1,2,3-triazol-4-yl)methyl 2,3,4-tri-O-acetyl-
β-glucopyranoside (3c)
The general procedure was used with propargyl glucose
(526 mg, 1.36 mmol) and 1-azidododecane (286 mg, 1.36
mmol); after column chromatography using EtOAc:hex-
anes (2:1, v/v), 666 mg (82%) of 3c were obtained as a
waxy solid. 1H NMR (CDCl3, 400MHz): δ 7.50 (s, 1H,
triazole-CH), 5.20 (app t, J = 9.5 Hz, 1H, H-3), 5.09 (app t,
J = 9.9 Hz, 1H, H-4), 5.01 (dd, J = 9.5, 7.9 Hz, 1H, H-2),
4.94 (d, J = 12.5 Hz, 1H, H-1’a), 4.82 (d, J = 12.5 Hz, 1H,
H-1’b), 4.69 (d, J = 8.0 Hz, 1H, H-1), 4.33 (t, J = 7.2 Hz,
2H, H-α), 4.27 (dd, J = 12.3, 4.8 Hz, 1H, H-6a), 4.15 (dd,
J = 12.3, 2.4 Hz, 1H, H-6b), 3.73 (ddd, J = 10.0, 4.8, 2.4
Hz, 1H, H-5), 2.09 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00
(s, 3H, OAc), 1.98 (s, 3H, OAc), 1.85-1.95 (m, 2H, H-β),
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1.19 - 1.36 (m, 18H, 9 x CH2), 0.88 (t, J = 6.7 Hz, 3H,
H-ω); 13C NMR (CDCl3, 100 MHz) δ 171.7, 171.2,
170.5, 170.4, 145.1, 123.5, 101.0, 73.9, 73.0, 72.3, 69.4,
64.1, 62.9, 51.5, 32.9, 31.4, 30.63 (2 × C), 30.56, 30.43,
30.36, 30.0, 27.6, 23.7, 21.8, 21.7, 21.6 (2 × C), 15.2;
HRESIMS calcd for C29H48N3O10: 598.3334; found:
598.3339.
(1-Tetradecyl-1H-1,2,3-triazol-4-yl)methyl 2,3,4-tri-O-
acetyl-β-glucopyranoside (3d)
The general procedure was used with propargyl glucose
(526 mg, 1.36 mmol) and 1-azidotetradecane (371 mg,
1.55 mmol); after column chromatography using EtOAc:
hexanes (3:2, v/v), 636 mg (75%) of 3d were obtained as
a waxy solid. 1H NMR (CDCl3, 400MHz): δ 7.49 (s, 1H,
triazole-CH), 5.19 (app t, J = 9.4 Hz, 1H, H-3), 5.09 (app
t, J = 9.9 Hz, 1H, H-4), 5.01 (dd, J = 9.5, 8.0 Hz, 1H,
H-2), 4.93 (d, J = 12.5 Hz, 1H, H-1’a), 4.81 (d, J = 12.1
Hz, 1H, H-1’b), 4.68 (d, J = 8.1 Hz, 1H, H-1), 4.33 (t,
J = 7.3 Hz, 2H, H-α), 4.27 (dd, J = 12.3, 4.8 Hz, 1H,
H-6a), 4.14 (dd, J = 12.3, 2.3 Hz, 1H, H-6b), 3.69 - 3.78
(m, 1H, H-5), 2.08 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.99
(s, 3H, OAc), 1.97 (s, 3H, OAc), 1.83 - 1.94 (m, 2H,
H-β), 1.17 - 1.40 (m, 22H, 11 x CH2), 0.87 (t, J = 6.8 Hz,
3H, H-ω); 13C NMR (CDCl3, 100 MHz): δ 170.6, 170.1,
169.4, 169.3, 144.0, 122.4, 99.8, 72.7, 71.9, 71.2, 68.3,
63.0, 61.8, 50.4, 31.9, 30.3, 29.6, 29.6, 29.58 (2 × C),
29.54, 29.33, 29.29, 28.9, 26.5, 22.6, 20.7, 20.6, 20.5 (2 × C),
14.1; HRESIMS calcd for C31H52N3O10: 626.3647; found:
626.3670.
(1-Hexadecyl-1H-1,2,3-triazol-4-yl)methyl 2,3,4-tri-O-
acetyl-β-glucopyranoside (3e)
The general procedure was used with propargyl glucose
(528 mg, 1.36 mmol) and 1-azidohexadecane (373 mg,
1.38 mmol); after column chromatography using EtOAc:
hexanes (3:2, v/v), 692 mg (78%) of 3e were obtained as
a white solid. 1H NMR (CDCl3, 400MHz): δ 7.49 (s, 1H,
triazole-CH), 5.19 (app t, J = 9.5 Hz, 1H, H-3), 5.08 (app
t, J = 9.8 Hz, 1H, H-4), 5.00 (dd, J = 9.5, 8.0 Hz, 1H,
H-2), 4.93 (d, J = 12.6 Hz, 1H, H-1’a), 4.81 (d, J = 12.5
Hz, 1H, H-1’b), 4.68 (d, J = 7.9 Hz, 1H, H-1), 4.32 (t, J =
7.2 Hz, 2H, H-α), 4.27 (dd, J = 12.3, 4.8 Hz, 1H, H-6a),
4.14 (dd, J = 12.3, 2.3 Hz, 1H, H-6b), 3.73 (ddd, J = 9.9,
4.7, 2.4 Hz, 1H, H-5), 2.08 (s, 3H, OAc), 2.01 (s, 3H,
OAc), 1.98 (s, 3H, OAc), 1.97 (s, 3H, OAc), 1.81 - 1.94
(m, 2H, H-β), 1.16 - 1.36 (m, 26H, 13 × CH2), 0.87 (t,
J = 6.6 Hz, 3H, H-ω); 13C NMR (CDCl3, 100 MHz): δ
170.6, 170.1, 169.4, 169.3, 143.9, 122.5, 99.7, 72.7, 71.8,
71.1, 68.2, 62.9, 61.7, 50.3, 31.8, 30.9, 30.2, 29.59 (2 × C),
29.56 (2 × C), 29.52, 29.45, 29.3, 29.3, 28.9, 26.4, 22.6,
20.7, 20.6, 20.5, 14.1; HRESIMS calcd for C33H56N3O10:
654.3960; found: 654.3980.
(1-(3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl)-1H-1,2,3-
triazol-4-yl)methyl 2,3,4-tri-O-acetyl-β-glucopyranoside (3f)
The general procedure was used with propargyl glucose
(702 mg, 1.81 mmol) and 1-azido-3,3,4,4,5,5,6,6,7,7,8,8,8-
tridecafluorooctane (707 mg, 1.81 mmol); after column
chromatography using EtOAc:hexanes (3:2, v/v), 846 mg
(60%) of 3f were obtained as a white solid. 1H NMR 1H
NMR (CDCl3, 400 MHz): δ 7.60 (s, 1H, triazole-CH),
5.20 (app t, J = 9.3 Hz, 1H, H-3), 5.10 (app t, J = 9.8 Hz,
1H, H-4), 5.01 (dd, J = 9.4, 8.1 Hz, 1H, H-2), 4.94 (d, J =
12.4 Hz, 1H, H-1’a), 4.83 (d, J = 12.7 Hz, 1H, H-1’b),
4.66-4.69 (m, 3H, H-1, H-α), 4.25 (dd, J = 12.4, 4.6 Hz,
1H, H-6a), 4.15 (dd, J = 12.4, 2.1 Hz, 1H, H-6b), 3.73
(ddd, J = 10.0, 4.4, 2.3 Hz, 1H, H-5), 2.83 (tt, J = 18.0, 7.5
Hz, 1H, H-β); 13C NMR (CDCl3, 100 MHz): δ 170.6,
170.2, 169.4, 169.4, 144.6, 123.4, 100.0, 72.6, 71.9, 71.1,
68.2, 63.0, 61.6, 42.3, 31.6, 20.7, 20.6 (3 × C); 19F NMR
(282 MHz, CDCl3) δ -81.23, -114.70, -122.35, -123.37, -
123.96, -126.64; HRESIMS calcd for C25H27N3O10F13:
776.1483; found: 776.1470.
(1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)-1H-1,2,3-triazol-4-yl)methyl 2,3,4-
tri-O-acetyl-β-glucopyranoside (3g)
The general procedure was used with propargyl glucose
(702 mg, 1.81 mmol) and 1-azido-3,3,4,4,5,5,6,6,7,7,8,8,9,
9,10,10,10-heptadecafluorooctane (707 mg, 1.81 mmol);
after column chromatography using EtOAc:hexanes (3:2,
v/v), 846 mg (60%) of 3g were obtained as a white solid.
1H NMR (CDCl3, 400 MHz): δ 7.59 (s, 1H, triazole-CH),
5.20 (app t, J = 9.3 Hz, 1H, H-3), 5.09 (app t, J = 9.8 Hz,
1H, H-4), 5.01 (dd, J = 9.4, 8.1 Hz, 1H, H-2), 4.93 (d, J =
12.4 Hz, 1H, H-1’a), 4.83 (d, J = 12.7 Hz, 1H, H-1’b),
4.66-4.70 (m, 3H, H-1, H-α), 4.25 (dd, J = 12.4, 4.6 Hz,
1H, H-6a), 4.18 (dd, J = 12.4, 2.1 Hz, 1H, H-6b), 3.73
(ddd, J = 10.0, 4.4, 2.3 Hz, 1H, H-5), 2.83 (tt, J = 18.0, 7.5
Hz, 1H, H-β); 13C NMR (CDCl3, 100 MHz): δ 170.6,
170.2, 169.4, 169.4, 144.6, 123.4, 100.0, 72.6, 71.9, 71.1,
68.2, 63.0, 61.6, 42.3, 31.6, 20.7, 20.6 (3 × C); 19F NMR
(282 MHz, CDCl3) δ -81.23, -114.68, -122.13, -122.44
(2 × CF2), -123.22, -123.94, -126.62; HRESIMS calcd for
C27H27N3O10F17: 867.1420; found: 876.1421.
General procedure for acetate deprotection
Triazole peracetates 3 were stirred in dry methanol.
NaOMe (1 eq.) was added and the solution stirred at
room temperature for 2-4 hr. Dowex® 50W × 8-100 ion
exchange resin was added and the reaction mixture
stirred for another 30 min. The resin was filtered and
the solvent concentrated. The crude residue was pu-
rified by recrystallization or column chromatography
to yield pure 1-alkyl-1H-1,2,3-triazol-4-ylmethyl β-D-
glucopyranosides 4.
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(1-Octyl-1H-1,2,3-triazol-4-yl)methyl β-D-glucopyranoside
(4a)
Following the general procedure for acetate deprotec-
tion, 902 mg (1.66 mmol) of 3a and 90 mg (1.66 mmol)
NaOMe were stirred in 6 mL MeOH. The crude product
purified by column chromatography, yielding 434 mg
(70%) of 4a as a white solid. 1H NMR (MeOD, 400
MHz): δ 8.03 (s, 1H, triazole-CH), 4.98 (d, J = 12.3 Hz,
1H, H-1’a), 4.79 (d, J = 12.4 Hz, 1H, H-1’b), 4.37 - 4.43
(m, 3H, H-1, H-α), 3.91 (dd, J = 11.9, 1.7 Hz, 1H, H-6a),
3.69 (dd, J = 11.9, 5.6 Hz, 1H, H-6b), 3.18 - 3.41 (m, 4H,
H-2, H-3, H-4, H-5), 1.85 - 1.98 (m, 2H, H-β), 1.22 -
1.42 (m, 10H, 5 × CH2), 0.90 (t, J = 6.7 Hz, 3H, H-ω); 13C
NMR (MeOD, 100 MHz): δ 145.8, 125.4, 103.7, 78.2, 78.1,
75.1, 71.7, 63.1, 62.9, 51.5, 33.1, 31.5, 30.4, 30.2, 27.6, 23.8,
14.6; HRESIMS calcd for C17H32N3O6 (M+H)+: 374.2286;
found: 374.2289; Anal calcd for C17H31N3O6: C 54.68,
H 8.37, N 11.25; found: C 54.43, H 8.20, N 10.99.

(1-Decyl-1H-1,2,3-triazol-4-yl)methyl β-D-glucopyranoside
(4b)
Following the general procedure for acetate deprotec-
tion, 597 mg (1.05 mmol) of 3b and 56 mg (1.05 mmol)
NaOMe were stirred in 4 mL MeOH for 4 hours. The
crude product was purified by column chromatography
(5:4:1 CH2Cl2:acetone:MeOH), yielding 266 mg (62%) of
4b as a white solid. 1H NMR (MeOD, 400 MHz): δ 8.03
(s, 1H, triazole-CH), 4.78 (d, J = 12.4 Hz, 1H, H-1’a), 4.78
(d, J = 12.4 Hz, 1H, H-1’b), 4.36-4.44 (m, 3H, H-1, H-α),
3.90 (dd, J = 11.9, 1.6 Hz, 1H, H-6a), 3.68 (dd, J = 11.9,
5.6 Hz, 1H, H-6b), 3.11 - 3.44 (m, 4H, H-2, H-3, H-4,
H-5), 1.81 - 2.00 (m, 2H, H-β), 1.17 - 1.44 (m, 14H, 7 ×
CH2), 0.90 (t, J = 6.7 Hz, 3H, H-ω); 13C NMR (MeOD,
100 MHz) δ 145.8, 125.4, 103.7, 78.2, 78.1, 75.1, 71.7,
63.1, 62.9, 51.5, 33.2, 31.4, 30.8, 30.7, 30.6, 30.3, 27.6,
23.9, 14.6; HRESIMS calcd for C19H36N3O6 (M +H)+:
402.2599; found: 402.2599; Anal cald for C19H35N3O6

(H2O)0.4: C 55.84, H 8.83, N 10.28; found: C 55.90,
H 8.77, N 10.09.

(1-Dodecyl-1H-1,2,3-triazol-4-yl)methyl β-D-
glucopyranoside (4c)
Following the general procedure for acetate deprotection,
540 mg (0.904 mmol) of 3c and 48 mg (0.904 mmol)
NaOMe were stirred in 4 mL MeOH for 4 hours. The
crude product was purified by recrystallization from acet-
one/hexane, yielding 266 mg (62%) of 4c as a white solid.
1H NMR (MeOD, 400 MHz): δ 8.01 (s, 1H, triazole-CH),
4.97 (d, J = 12.3 Hz, 1H, H-1’a), 4.78 (d, J = 12.4 Hz, 1H,
H-1’b), 4.38-4.1 (m, 3H, H-1, H-α), 3.90 (dd, J = 11.7,
1.5 Hz, 1H, H-6a), 3.66 (dd, J = 11.9, 4.9 Hz, 1H, H-6b),
3.17 - 3.37 (m, 4H, H-2, H-3, H-4, H-5), 1.78 - 2.04 (m,
2H, H-β), 1.19 - 1.42 (m, 18H, 9 x CH2), 0.90 (t, J = 6.7
Hz, 3H, H-ω); 13C NMR (MeOD, 100 MHz): δ 145.8,
125.4, 103.8, 78.2, 78.1, 75.2, 71.8, 63.2, 62.9, 51.5, 33.2,
31.4, 30.9 (2 × C), 30.8, 30.7, 30.6, 30.2, 27.6, 23.9, 14.6;
HRESIMS calcd for C21H40N3O6 (M + H)+: 430.2912;
found: 430.2917; Anal calcd for C21H39N3O6(H2O)0.25:
C 58.11, H 9.17, N 9.68: Found: C 58.33, H 9.14, N 9.37.

(1-Tetradecyl-1H-1,2,3-triazol-4-yl)methyl β-D-
glucopyranoside (4d)
Following the general procedure for acetate deprotec-
tion, 394 mg (0.630 mmol) of 3d and 34 mg (0.63 mmol)
NaOMe were stirred in 2.4 mL MeOH for 2 hours. The
crude product was purified by column chromatography
(5:4:1 CH2Cl2:acetone:MeOH), yielding 177 mg (61%) of
4d as a white solid. 1H NMR (MeOD, 400MHz): δ 8.01
(s, 1H, triazole-CH), 4.97 (d, J = 12.4 Hz, 1H, H-1’a), 4.78
(d, J = 12.4 Hz, 1H, H-1’b), 4.35 - 4.44 (m, 3H, H-1, H-α),
3.90 (dd, J = 11.8, 1.6 Hz, 1H, H-6a), 3.65 - 3.72 (m, 1H,
H-6b), 3.19 - 3.34 (m, 4H, H-2, H-3, H-4, H-5), 1.83 - 1.99
(m, 2H, H-β), 1.18 - 1.43 (m, 22H, 11 × CH2), 0.90 (t, J =
6.6 Hz, 3H, H-ω); 13C NMR (MeOD, 100 MHz): δ 145.8,
125.4, 103.8, 78.2, 78.1, 75.2, 71.8, 63.2, 62.9, 51.5, 33.2,
31.4, 30.92, 30.90, 30.89, 30.87, 30.8, 30.7, 30.6, 30.2, 27.6,
23.9, 14.6; HRESIMS calcd for C24H44N3O6 (M+H)+:
458.3225; found: 458.3246; Anal calcd for C24H43N3O6:
60.37, H 9.47, N 9.18; found: C 59.97, H 9.29, N 8.91.

(1-Hexadecyl-1H-1,2,3-triazol-4-yl)methyl β-D-
glucopyranoside (4e)
Following the general procedure for acetate deprotection,
800 mg (1.22 mmol) of 3e and 66 mg NaOMe (1.22
mmol) were stirred in 5 mL MeOH for 3.5 hours. The
crude product was purified by recrystallization from me-
thanol, yielding 176 mg (30%) of 4e as a white solid. 1H
NMR (DMSO-d6, 400 MHz): δ 8.10 (s, 1H, triazole-CH),
4.83 (d, J = 12.1 Hz, 1H, H-1’a), 4.62 (d, J = 12.4 Hz, 1H,
H-1’b), 4.32 (t, J = 7.1 Hz, 2H, H-α), 4.25 (d, J = 7.7 Hz),
3.71 (dd, J = 11.7, 1.8 Hz, 1H, H-6a), 3.46 (dd, J = 11.8, 6.4
Hz, 1H, H-6b), 3.08 - 3.18 (m, 3H, H-3, H-4, H-5), 2.98
(app t, J = 7.8 Hz, H-2), 1.73 - 1 .86 (m, 2H, H-β), 1.15 -
1.39 (m, 26H, 13 × CH2), 0.85 (t, J = 7.3 Hz, H-ω); 13C
NMR (DMSO-d6, 100 MHz): δ 143.7, 124.0, 102.1, 76.9,
76.7, 73.4, 70.1, 61.5, 61.2, 49.2, 31.3, 29.7, 29.01 (4 × C),
28.98 (2 × C), 28.93, 28.85, 28.7, 28.4, 25.8, 22.0, 13.9;
HRESIMS calcd for C25H48N3O6 (M+H)+: 486.3538;
found: 486.3530; Anal calcd for C25H47N3O6 : C 61.83, H
9.75, N 8.65; found: C 61.66, H 9.61, N 8.44.

(1-(3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl)-1H-1,2,3-
triazol-4-yl)methyl β-D-glucopyranoside (4f)
Following the general procedure for acetate deprotec-
tion, 397 mg of 3f and 28 mg NaOMe were stirred in 2
mL MeOH for 3.5 hours. The crude product was puri-
fied by recrystallization from acetone/hexane, yielding
128 mg (38%) of 4f as a white solid. 1H NMR (MeOD,
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400 MHz): δ 8.10 (s, 1H, triazole-CH), 4.97 (d, J = 12.5
Hz, 1H, H-1’a), 4.75 - 4.83 (m, 3H, H-1’a, H-α), 4.38 (d,
J = 7.7 Hz, 1H, H-1), 3.89 (dd, J = 11.9, 2.0 Hz, 1H, H-
6a), 3.67 (dd, J = 11.8, 5.3 Hz, 1H, H-6b), 3.26 - 3.41
(m, 3H (1H buried under solvent signal), H-3, H-4, H-5),
3.21 (dd, J = 8.9, 7.8 Hz, 1H, H-2), 2.95 (tt, J = 19.0, 7.1 Hz,
2H, H-β); 13C NMR (MeOD 100 MHz): δ 146.2, 126.0,
103.8, 78.2, 78.1, 75.2, 71.8, 63.1, 62.9, 43.6, 32.3; 19F NMR
(MeOD, 282 MHz) δ -80.7, -113.68, -121.17, -122.16, -
122.85, -125.61; HRESI MS calcd for C17H19N3O6 (M+H)+:
608.1061; found: 608.1064; Anal calcd for C17H18N3O6:
C 33.62, H 2.99, N 6.92; found: C 33.62, H 2.91, N 6.85.

(1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
Heptadecafluorodecyl)-1H-1,2,3-triazol-4-yl)methyl β-D-
glucopyranoside (4g)
Following the general procedure for acetate deprotec-
tion, 425 mg (0.48 mmol) of 3g and 28 mg (0.48 mmol)
NaOMe were stirred in 2 mL MeOH for 3.5 hours. The
crude product was purified by recrystallization from
methanol, yielding 138 mg (41%) of 4g as a white solid.
1H NMR (MeOD, 400MHz): δ (ppm) 8.11 (s, 1H), 4.98
(d, J = 12.5 Hz, 1H), 4.75 - 4.83 (m, 3H, H-1’a, H-α), 4.39
(d, J = 7.7 Hz, 1H), 3.90 (dd, J = 11.9, 1.8 Hz, 3H), 3.68
(dd, J = 11.9, 5.6 Hz, 4H), 3.25 - 3.39 (m, 3H (1H buried
under solvent signal), H-3, H-4, H-5), 3.21 (dd, J = 9.0,
7.8 Hz, 1H), 2.95 (tt, J = 18.7, 7.1 Hz, 8H); 13C NMR
(MeOD, 100 MHz): δ (ppm) 146.2, 126.0, 103.8, 78.2,
78.1, 75.2, 71.8, 63.1, 62.9, 43.6, 32.3; 19F NMR (282
MHz, MeOD) δ ppm -80.64, -113.67, -120.97, -121.14
(2 × CF2), -122.00, -122.79, -125.56 (br. s.); HRESIMS
calcd for C19H19N3O6F17: 708.0997; found: 708.1006;
Anal calcd for C19H18N3O6: C 32.26, H 2.56, N 5.94;
found: 31.92, H 2.57, N 5.66.

Cell culture experiments
Dilutions of experimental chemical compounds
Chemical compounds stock solutions and their dilutions
were prepared in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, St Louis, MO) and as necessary aliquots were
added directly to 24- and 96-wells plates containing cells
in complete media.

Cell line & culture conditions
The human acute leukemia T-lymphocytes Jurkat cell
line (Jurkat; ATCC, Manassas, VA) was used for the
cytotoxicity assay [41]. Jurkat cells were derived from
a 14 years old male donor afflicted with non-Hodgkin
T-lymphoma. The culture medium for Jurkat cells was
Roswell Park Memorial Institute medium (RPMI; HyClone,
Logan, UT) with 10% heat inactivated fetal bovine serum
(FBS; HyClone). The medium was supplemented with 100
U/mL penicillin and 100 μg/mL streptomycin (Lonza,
Walkersville, MD). Cells growing exponentially around
60–75% confluence were counted and seeded into 96-
well plate format (Greiner Bio-One, Monroe, NC) at a
density of 25,000 cells in 100 μL culture media per well.
All the incubation conditions were 37°C in a humidified
5% CO2 atmosphere. To guarantee high viability, cells
were prepared as previously detailed [23]. All tests were
assessed in quadruplicate.

MTS colorimetric assay for cell viability
Jurkat cells were incubated with a gradient of the experi-
mental compounds from 8 μM to 2000 μM. After 12 h
of incubation, 20 μL of the MTS [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium] reagent (CellTiter 96 AQueousOne
Solution Cell Proliferation Assay; Promega, Madison,
WI) were added to each well and subsequently incu-
bated for an additional 4 h for a total incubation period
of 16 h. The colored formazan product was measured by
absorbance at 490 nm with a reference wavelength of 650
nm using a microplate reader (SpectraMax 190 Absorb-
ance Microplate Reader, Molecular Devices, Sunnyvale,
CA). Control wells, containing the same volumes of cul-
ture medium and MTS reagent, were utilized to subtract
background absorbance [9]. In addition, 1 mM of hydro-
gen peroxide (H2O2; Sigma-Aldrich, St Louis, MO) was
used as a positive control for cytotoxicity. DMSO treated
cells as solvent control and untreated (Unt) cells were also
included in each experimental plate. Data are expressed as
the cell viability percentage relative to DMSO treated con-
trol cells. Each experimental point was performed in
quadruplicate to obtain the mean and standard deviation
values.
Inhibitory concentration 50% (IC50) in μM is defined as

the concentration of experimental compound required to
inhibit 50% of the conversion of MTS to formazan, as
compared with the absorbance produced by untreated
cells after 16 h of incubation. Data derived from the MTS
assay was used to determine the IC50. The two absorbance
values closest to the 50% point were plotted with its corre-
sponded chemical compound concentration and the equa-
tion of the regression line was utilized to calculate the
IC50 as described previously [42].

Annexin V/PI apoptosis/necrosis assay
The triazole-containing alkyl β-D-glucopyranosides 4d
and 4e were selected because of their comparatively high
toxicity (Table 1) to gain further insights into the mode
and mechanism of cell death caused by this class of
surfactants. The structural analog of 4d, alkyl β-D-
glucopyranosides C14G1, was selected as a control surfac-
tant because its IC50 value is comparable to 4d and 4e.
Briefly, Jurkat cells were seeded in a 24-well flat bottom
tissue culture plate (Becton Dickinson, Franklin Lakes,
NJ) at a cell density of 100,000 cells per well in 1 mL
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of culture media as described above. Triazole-containing
alkyl β-D-glucopyranosides 4d and 4e and C14G1 were
added to the cells at their respective IC50 followed by ad-
ditional incubation of 16 h. The following controls were
included in each experimental plate: (1) H2O2 (1 mM)
was used as a positive control for apoptosis; (2) DMSO
(1% v/v) was used as a solvent control; and (3) un-
treated (Unt) cells that were not exposed to DMSO or
compound. All treatments including controls were run
in quadruplicates. Cells from each individual well were
collected in a pre-chilled ice-water cytometric tube,
washed and processed essentially as detailed previously
[40]. Briefly, cells were stained with a solution contain-
ing a mix of Annexin V-FITC and PI in 100 μL of bind-
ing buffer (Beckman Coulter, Miami, FL). After 15 min
of incubation on ice in the dark, 300 μL of ice-cold
binding buffer was added to the cell suspensions and
immediately examined via flow cytometry (Cytomics
FC 500; Beckman Coulter, Miami, FL). The total per-
centage of apoptotic cells was interpreted as the sum of
both early and late stages of apoptosis (Annexin V-FITC
positive), bottom and top right quadrants in a flow cyto-
metric dot plots, respectively. Cells undergoing necrosis
only stain with PI and not with Annexin V-FITC. For
each sample, approximately 5,000 individual events were
acquired per sample and analyzed with CXP software
(Beckman Coulter, Miami, FL). Prior to data acquisition,
the flow cytometer was set up and calibrated utilizing
unstained, single- (PI or Annexin V-FITC) and double-
(PI and Annexin V-FITC) stained cells. FL1 and FL2 de-
tectors were plotted at x-axis versus y-axis, respectively.

Mitochondrial membrane potential (ΔΨm) polychromatic
analysis
Jurkat cells, plated in a 24 well format, were treated for
6 h [39] with IC50 concentration values of compounds
and stained with 2 μM of JC-1 (5,5',6,6'-tetrachloro-
1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide)
fluorophore following the manufacturer’s instructions
(MitoProbe; Life Technologies, Grand Island, NY).
Cells with intact polarized mitochondria allow JC-1 ag-
gregation that emits a red fluorescence signal; whereas
cells with depolarized mitochondria result in the forma-
tion of JC-1 monomers that emit a green fluorescence
signal. The same controls described in the previous sec-
tion were also included in these analyses. Data acquisi-
tion and analysis was accomplished by using CXP
software (Beckman Coulter). Each data point was ob-
tained from four independent replicates.

Live-cell detection of intracellular caspase-3 activation
Cysteine-aspartic protease-3 (caspase-3) activation was
verified by using a fluorogenic NucView 488 Caspase-3/7
substrate for live cells, following the vendor’s protocol
(Biotium, Hayward, CA). This substrate diffuses easily
into cells with intact plasma membrane and permits
the detection of caspase-3 activation in live cells. Jurkat
cells were seeded on a 24-well plate format and treated
with the IC50 concentration of experimental compounds
for 6 h. Cells exhibiting a green fluorescence signal, reveal-
ing of caspase-3 activation, were monitored via flow cy-
tometry (Cytomics FC500, Beckman Coulter). The same
three controls were also analyzed in parallel as described
in previous sections. Each data point was obtained from
three replicates. Approximately 5,000 events were col-
lected and analyzed per sample using CXP software as de-
scribed above.
Statistical analysis
Every experimental test was accomplished in quadru-
plicate. To denote experimental variability, all data are
plotted with the standard deviation of the mean. The
statistical importance of differences between two ex-
perimental samples was achieved via two-tailed paired
Student's t-tests. To define whether comparisons of two
independent samples have statistical significance, P < 0.01
value was considered significant.
Conclusions
The synthetic approach employed allows the rapid syn-
thesis of novel triazole-linked, glucose-based surfactants
4a-g with well-defined stereochemistry at the anomeric
carbon and hydrocarbon or fluorocarbon hydrophobic
tails. An initial toxicity assessment revealed that selected
triazole-containing alkyl β-D-glucopyranosides (4c-e) and
the structurally related tetradecyl β-D-glucopyranoside
(i.e., C14G1) cause cytotoxic effects on Jurkat cells at
low micromolar concentrations. Jurkat cells treated with
triazole-containing alkyl β-D-glucopyranosides 4d and 4e
and alkyl β-D-glucopyranoside C14G1 exhibited phospha-
tidylserine externalization, an early biochemical event of
apoptosis. Furthermore, selected compounds induced
mitochondria depolarization and caspase-3 activation that
are features of induction of the intrinsic apoptotic cascade.
Additional studies are needed to explore the impact of
triazole-containing alkyl β-D-glucopyranosides 4 and
other carbohydrate surfactants to better understand the
molecular mechanisms of their toxicity.
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