Anarjan et al. Chemistry Central Journal 2013, 7:127
http://journal.chemistrycentral.com/content/7/1/127

CC Chemistry Central
J Journal

RESEARCH ARTICLE Open Access

Influence of astaxanthin, emulsifier and organic
phase concentration on physicochemical
properties of astaxanthin nanodispersions

Navideh Anarjan’, Imededdine Arbi Nehdi® and Chin Ping Tan®"

Abstract

Background: The emulsification-evaporation method was used to prepare astaxanthin nanodispersions using a
three-component emulsifier system composed of Tween 20, sodium caseinate and gum Arabic. Using Response-
surface methodology (RSM), we studied the main and interaction effects of the major emulsion components,
namely, astaxanthin concentration (0.02-0.38 wt %, x;), emulsifier concentration (0.2-3.8 wt %, x,) and organic
phase (dichloromethane) concentration (2-38 wt %, x3) on nanodispersion characteristics. The physicochemical
properties considered as response variables were: average particle size (Y;), PDI (Y,) and astaxanthin loss (Y3).

Results: The results indicated that the response-surface models were significantly (p < 0.05) fitted for all studied
response variables. The fitted polynomial regression models for the prediction of variations in the response variables
showed high coefficients of determination (R? > 0.930) for all responses. The overall optimum region resulted in a
desirable astaxanthin nanodispersions obtained with the concentrations of 0.08 wt % astaxanthin, 2.5 wt %
emulsifier and 11.5 wt % organic phase.

Conclusion: No significant differences were found between the experimental and predicted values, thus certifying
the adequacy of the Response-surface models developed for describing the changes in physicochemical properties
as a function of main emulsion component concentrations.
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Background

Carotenoids are natural pigments synthesized by microor-
ganisms and plants that function as light-absorbing pig-
ments during photosynthesis and also protect cells against
photosensitization. Due to their antioxidant properties,
they have received great attention in the past decades.
However, their unsaturated structures make them highly
sensitive to heat, oxidation, and light. Furthermore, their
insolubility in water and poor oil solubility at room
temperature [1] cause them to have very low bioavailabil-
ities, so only a minor fraction of the carotenoids found in
raw fruits or vegetables is absorbed in the intestines [2,3].
The carotenoid astaxanthin was selected for this study
due to its unique health benefits. It has a high antioxidant
capacity, being a powerful quencher of singlet oxygen and
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a strong scavenger of oxygen free radicals. The effective-
ness of astaxanthin in the prevention of different cancers
has also been proven [4,5].

The incorporation of astaxanthin into nanosystems
such as nanodispersions can overcome their bioavailability
problems by increasing their dissolution rate and satur-
ation solubility due to a reduced size and increased surface
area [3]. With this modern method of encapsulation tech-
nology, solubility, stability, and bioavailability of caroten-
oids can be considerably improved. Moreover, they will
be able to be incorporated into water-based food formula-
tions effortlessly, as nutrition value enhancer, colorant,
antioxidant [1,3]. The emulsification-evaporation tech-
nique is one of the most common methods used for
the preparation of carotenoid nanodispersions [2-4]. The
formulation parameters of nanodispersions affect their
characteristics, as do processing and environmental vari-
ables. To optimize the physicochemical properties of a
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nanodispersion system, all these parameters should thus
be optimized.

In our previous work, we optimized the processing
conditions including the pressure and number of passes
through high-pressure homogenizer and the evaporation
temperature to obtain nanodispersions with the mini-
mum astaxanthin particle size and polydispersity index
(PDI) and maximum astaxanthin concentration [4]. In
another study, we optimized the proportions of three se-
lected components, namely, sodium caseinate, Tween 20
and gum Arabic in the emulsifier mixture to yield the
best physicochemical characteristics and stability in the
resulting nanodispersions. The results indicated that
the mixture of 29 wt % Tween 20, 65 wt % sodium ca-
seinate and 6 wt % gum Arabic provided the optimum
nanodispersion in terms of physicochemical and stability
properties [6,7].

The objective of the present study was to systematic-
ally investigate the influence of the concentrations of the
three main emulsion components, astaxanthin, emulsi-
fier and organic phase, on the particle size, PDI and
astaxanthin loss of astaxanthin nanodispersions. The
Authors also optimized those components, in order to
obtain nanodispersions with the least astaxanthin loss
during processing and the lowest particle size and PDI
using response-surface methodology (RSM). In cases
where multiple variables affect the outputs, RSM is an
efficient procedure for investigating the relationships
between the dependant (response) and the independent
variables [8]. RSM has a main advantage over the single
factor analysis due to its providing the assessment of
the multiple variables and their interactions effects on
the responses by means of a reduced number of experi-
ments [4,8].

Results and Discussions

Fitting the Response-surface equations

Response-surface analysis presented empirically significant
(p<0.05) models for the estimation of variations in
particle size, PDI and astaxanthin loss as a function of
astaxanthin, emulsifier and organic phase concentrations.
The particle size, PDI and astaxanthin loss in all the exper-
iments are listed in Table 1. The predicted data, listed in
Table 2, were calculated using the equations obtained
from the regression of experimental data. All regression
coefficients, corresponding R* and R*-adjusted, individual
significance F-ratio and p-values of the independent vari-
ables are shown in Table 2.

The high coefficients of determination (R? > 0.90)
(Table 2) obtained from the ANOVA analysis show that
more than 90% of the variability of the studied physico-
chemical characteristics of the prepared nanodispersions
was explained by the RSM models as a nonlinear func-
tion of emulsion composition concentrations.
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As shown in Table 2, the emulsifier concentration had
the most significant (p <0.05) effect on all responses
compared with other emulsion components. Although
the interaction effects of astaxanthin concentration with
organic phase concentration and the quadratic effect of
astaxanthin were non-significant in the variation of both
PDI and astaxanthin loss, the variation of particle size
was influenced significantly (p <0.05) by all quadratic
and interaction effects of the variables. All nonsignificant
interactions and quadratic terms were omitted in the
final reduced regression models. The polynomial regres-
sion models and recommended optimum region were
significant (p <0.05) only in the studied independent
variable ranges. Thus, the fitted models cannot be ex-
trapolated beyond these ranges [9].

Average particle size

To visualize the effect of the independent variables on
responses (only for significant interactions), surface
response plots of the quadratic polynomial models were
generated by holding an independent variable constant
at its center point and varying the remaining two vari-
ables within the experimental range. As shown in
Table 2, the variation of average particle size was signifi-
cantly (p <0.05) explained by a full quadratic regression
equation (R*=0.963). The main effect of astaxanthin
concentration was insignificant on particle size changes,
but its quadratic effect was significant on particle
size. The positive quadratic effect of astaxanthin concen-
tration confirmed the increases of particle size upon
increasing the astaxanthin concentration, especially at
high levels. The negative single effects and positive
quadratic effects of emulsifier and organic phase con-
centrations on the particle size of the astaxanthin
nanodispersions illustrated that the effect of this variable
on particle size was different at its various levels. As
shown in Figure 1 and Table 2, at low emulsifier (or or-
ganic phase) concentrations, increasing their concentra-
tions led a decrease in particle size, but they inversely
affected this response at high levels.

Figure la and b show that the combined effects of
astaxanthin and emulsifier concentrations as well as
astaxanthin and organic phase concentration on particle
size depended on the level of these two factors. For both,
at low astaxanthin concentrations, increasing the emulsi-
fier or organic phase concentration caused the particle
size to increase, whereas at high astaxanthin concentra-
tions it caused a decrease in particle size up to a point
and then increased it again. According to the signifi-
cance probabilities of the interaction terms of the stud-
ied independent variables (Table 2), the interaction of
emulsifier concentration with organic phase concentra-
tion influenced the particle size more significantly (i.e.,
with a lower p-value and a higher F-ratio) than the other
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Table 1 Matrix of the central composite design (CCD), experimental and predicted data

Run 2x1,% x,% x3,% Particle size (nm) PDI Astaxanthin loss (wt %)
number Y s, Ve Vo, Vore *Yerp. Vore
1P 0.20 20 20 9749 93.20 0.382 0375 1246 17.59
2P 0.20 20 20 95.83 93.20 0.383 0.375 15.11 17.59
3 0.30 1.0 30 103.90 103.91 0.300 0310 2541 24.90
4 0.10 1.0 10 90.29 93.63 0.246 0.241 36.27 3532
5 0.10 3.0 30 139.10 137.65 0485 0.501 433 0.65
6 0.30 30 10 107.57 112.60 0526 0519 26.75 25.07
7 0.10 1.0 30 9943 94.75 0.241 0.223 38.64 38.26
8 0.30 1.0 10 133.20 135.00 0310 0.306 19.00 2143
9P 0.20 20 20 98.35 99.93 0374 0.364 18.04 17.32
10 0.20 20 20 95.98 99.93 0.387 0.364 21.59 17.32
" 0.30 30 30 137.88 134.89 0.549 0.566 10.50 1218
12 0.10 30 10 109.73 110.07 0.393 0432 10.98 12.23
13 0.38 20 20 13097 129.00 0443 0445 17.99 18.57
14 0.20 20 20 96.98 97.35 0372 0376 19.81 19.04
15 0.20 20 38 120.02 125.26 0.388 0.399 15.65 14.80
16 0.20 20 2 12197 116.30 0.341 0.353 26.76 23.29
17 0.20 3.8 20 129.96 129.62 0.672 0.644 13.69 15.16
18 0.02 20 20 104.83 106.37 0315 0.308 15.34 19.52
19 0.20 20 20 9641 97.35 0.384 0.376 19.53 19.04
20 0.20 0.2 20 99.14 99.05 0.209 0223 47.56 46.91

P center point.

x4, X2 and xz are astaxanthin concentration, emulsifier concentration and organic phase concentration, respectively.

BY exp. €xperimental data.
“Ypre. predicted data.

interaction terms. At low organic phase concentrations,
increasing the emulsifier concentrations caused the par-
ticle size to decrease, but increasing the emulsifier con-
centration increased the particle size at high organic
phase concentrations. Actually, at low levels of organic
phase, increasing the emulsifier content could not in-
crease the viscosity of system significantly after removing
the organic phase, but at high levels of organic phase,
since the system was more concentrated after organic
phase removal, the viscosity increase of system due to
addition of emulsifier will be more considerable. In vis-
cose systems, the mutual disruption of the dispersed
phase is hindered and larger particles would initially be
produced [10-13]. The same patterns were also seen in
the effect of organic phase concentration at different
levels of emulsifier concentration (Figure 1c).

The increase in particle size by increasing carotenoid
concentration at constant concentrations of emulsifier
and organic phase has also been reported in previous
studies [3,10,11]. The increase of particle size in pre-
pared nanodispersions due to increased initial loading of
bioactive compounds can be explained by the fact that
as the astaxanthin content increased, the available

emulsifier decreased. Therefore, their stabilizing effi-
ciency was limited, which favoured astaxanthin particles
coalescence and, thus, increase of the system mean par-
ticle size [3,10-13]. In the preparation of functional lipid
nanodispersions via emulsification-evaporation, high-
pressure homogenization forms water-insoluble solvent
droplets containing dissolved active compounds. Evapor-
ating the solvent causes the functional lipid compound
to precipitate or crystallize, and the particles formed are
bound with the emulsifier. A lower concentration of solute
in the solvent ensures a sufficient amount of emulsifier is
present to stabilize the small precipitated or crystallized
particles after evaporation, resulting in smaller final
particles in the resulting nanodispersions [3]. A consid-
erable enhancement of particle size due to an increase
of astaxanthin concentration was seen in our results,
especially at high levels of astaxanthin concentration.
According to the results reported by Chu et al. [3],
Mainardes and Evangelista [14] and Kanafusa et al. [15],
an increase in emulsifier concentration causes a decrease
in particle size in emulsion systems. Other researchers
such as Jafari et al. [13], Lobo and Svereika [16] and
Tcholakova et al. [17] concluded that there are two
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Table 2 Regression coefficients, significance probability (p-value and F-ratio), R> and R? (adj) values for the final

reduced second-order polynomial models

Term ? Particle size (nm) PDI Astaxanthin loss (%)
Coefficient F-value p-value Coefficient F-ratio p-value Coefficient F-ratio p-value

Constant 133,089 82.99 0.00 041996 23.09 0.000 66.040 7346 0.000

Linear

X 32485 023 0642 ° 0379193 55.52 0.000 —133685 2891 0.000

% -19.755 861 0019 0014151 033 0572° ~28.809 3943 0.000

X3 ~3.702 30.25 0.001 —0.00196 183 0.197° 0556 500 0.047

Quadratic

3 627.664 3024 0.001 NSP NSP NSP NSP NSP NS®

X3 5243 21.10 0.002 0.01759 15.59 0.001 5.139 370 0.001

X2 0072 4014 0.000 NSP NSP NSP NS NS NS

Interaction

1% —63.450 1407 0.006 NSP NSP NSP 65529 3051 0.000

Xi%3 —4689 7.68 0.024 NSP NSP NSP NSP NSP NSP

XoX3 0.998 34.82 0.000 0.00162 563 0033 ~0.39591 11.55 0.006

R? 0.963 0.980 0.942

R* (ad)) 0913 0.968 0.900

@ X1, X2 and xs are astaxanthin concentration, emulsifier concentration and organic phase concentration, respectively.

b (NS) not significant (p > 0.05).

effects of emulsifier concentrations on the particle size
of emulsions; a surfactant-poor regime, in which particle
size decreases with increasing emulsifier concentration,
and a surfactant-rich regime, in which particle size does
not depend on emulsifier concentration or it increases
with increasing emulsifier concentration. Both of these
effects were seen in our results, except at low levels of
astaxanthin and high levels of organic phase ratio, in
which particle size was only increased by raising the
emulsifier concentration (Figures la and c). Based on
the stabilizing function of an emulsifier, a decrease of
particle size due to an increase in emulsifier concentra-
tion was expected. In the emulsification-evaporation
method, in which the emulsification and stabilization of
the particles are critical factors, the amount of emulsifier
plays an important role in the emulsification process
and in the protection stabilization of the droplets, be-
cause it can prevent the coalescence of particles [14]. An
adequate amount of emulsifier is sufficient to immedi-
ately cover the whole surface area of freshly prepared
droplets after high-energy homogenization as well as the
particles precipitated after solvent removal, so that
preventing their recoalescence [3]. However, further in-
creasing the emulsifier, especially at low astaxanthin or
high organic phase concentrations (after evaporation of
this high amount of solvent), induces particle coales-
cence via bridging flocculation, depletion flocculation,
and other mechanisms, particularly in our studied sys-
tem, in which the emulsifier contained protein, a

hydrocolloid and a low-molecular-weight emulsifier, as
their interactions would be extensive at high concentra-
tions [18].

Mainardes and Evangelista [14] found that an increase
in the organic phase concentration led to a slight de-
crease in particle size; conversely, Tan and Nakajima [2]
and Chu et al. [19] reported an increase in particle size
with increasing organic phase concentrations. Manipu-
lating the viscosity of the organic phase or controlling
the evaporation parameters such as duration time and
the rate of solvent evaporation are some of the mecha-
nisms by which the organic phase properties can be used
to control the particle size of a dispersion system [14,19].
As illustrated in Figures 1b and c, at low levels of
astaxanthin and/or high levels of emulsifier concentration,
increasing the organic phase concentration caused the
particle size to increase; however, at low levels of emulsi-
fier concentration this had the inverse effect on particle
size. That is, both positive and negative effects of organic
phase concentration on particle size were observed at high
astaxanthin concentration. The individual optimum
optimization procedure predicted that the minimum aver-
age particle size (86.51 nm) would be obtained at concen-
trations of 0.09 wt %, 0.81 wt % and 20 wt % for
astaxanthin, emulsifier and organic phase.

Polydispersity index (PDI)
The results showed that the studied emulsion composition
concentrations had significant (p < 0.05) effects on the PDI



Anarjan et al. Chemistry Central Journal 2013, 7:127
http://journal.chemistrycentral.com/content/7/1/127

Particle size (nm)

Emulsifier (%)

40

Particle size (nm)

0  Organic phase (%)

Particle size (nm)

"/,/ 2274
40
20
Organic phase (%)

. 4 0
Emulsifier (%)

Figure 1 Response-surface plots for particle size as function of
significant (p < 0.05) interaction effects between emulsion

component concentrations.

(Y5) variation (Table 2). The final reduced model showed a
relatively high coefficient of determination (R* = 0.978). The
single effect of astaxanthin concentration, the quadratic ef-
fect of emulsifier concentration and its interaction with or-
ganic phase concentration were significant (p < 0.05) on the
PDI of the resulting astaxanthin nanodispersions. The sin-
gle main effects of emulsifier and organic phase concentra-
tions were retained in final reduce model despite their
insignificance due to their significant (p <0.05) quadratic
and interaction effects. All significant effects were positive,
meaning that increasing these variables increased the PDI
(Figure 2). By increasing the astaxanthin and/or emulsifier
concentrations, the particle size distribution tended to be-
come polymodal, perhaps due to a high recoalescence rate
as a result of the higher collision of particles after emulsifi-
cation or precipitation. The increase in PDI with an in-
creasing amount of emulsifier in the system may be related
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to the production of micelles by the emulsifier at high con-
centrations. The probability of micelle production is con-
siderably increased in multiple emulsifier systems; in these
systems, the transition from a surfactant-poor regime to a
surfactant-rich regime could occur at low emulsifier con-
centrations. Therefore, further increases in emulsifier con-
centration caused heterogeneity in the particle size and so
increased the PDL Several previous studies have reported
different results for the effect of emulsifier concentrations
on PDI; Chu et al. [3] and Mainardes and Evangelista [14]
reported that the PDI was reduced by increasing the emul-
sifier concentration. As mentioned before, these differences
in results may be related to different nature of the emulsi-
fier systems used to stabilize the emulsion systems in the
different studies. However, our finding relating to the active
compound concentration effect on PDI is in good agree-
ment with the previous results. According to our results,
the organic phase concentration effect was dependent on
the emulsifier concentration at different levels. At low
emulsifier concentration, an increase in the organic phase
concentration reduced the PDI, but at high emulsion con-
centrations, it acted inversely. Increasing the PDI by in-
creasing the organic phase ratio was also reported by Chu
et al. [19], but other researchers reported no systematic
changes in PDI by varying the organic phase concentration
[14]. The decrease of PDI by increasing the organic phase
concentration (which has been observed in some of our re-
sults) may be related to the viscosity of dichloromethane,
used in this work as the organic phase, being lower than
the viscosity of water. A lower-viscosity organic phase is
more favorable for mixing efficiency and reduces shear
stress, allowing for easy droplet deformation during
homogenization [18]. The individual optimum concentra-
tions for the production of nanodispersions with the lowest
PDI (0.127) were predicted to be 0.020 wt % for
astaxanthin, 0.20 wt % for the emulsifier and 38% for the
organic phase.

Astaxanthin loss in nanodispersions

As shown in Table 2, the variation of astaxanthin loss
(Y3) was significantly (p < 0.05) well-fitted by a nonlinear
second-order regression equation (R*=0.942). All single
main effects of the independent variables, the quadratic
effect of emulsifier concentration and its interactions
with both organic phase and astaxanthin concentrations
were significant in the prediction of astaxanthin loss for
the nanodispersions. As shown in Figure 3a, the effect of
astaxanthin concentration on astaxanthin loss depended
on the emulsifier concentration used. At low levels of
emulsifier concentration, increasing the astaxanthin re-
duced astaxanthin loss, but at high concentrations of
emulsifier in the system, the effect was reversed. The
same pattern was observed (Figure 3a) for the influence
of emulsifier concentration on astaxanthin loss at
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significant (p < 0.05) interaction effects between emulsifier and
organic phase concentrations.

different levels of astaxanthin concentration. The effect
of organic phase concentration on astaxanthin loss
also was dependent on emulsifier concentration levels
(Figure 3b). The effect of organic phase concentration
was greater for high levels of emulsifier concentration, at
which the astaxanthin loss was reduced by raising the
organic phase concentration. Additionally, an extensive
reduction of astaxanthin loss was observed on increasing
the emulsifier concentration at high organic phase con-
centrations. It is well known that astaxanthin, like other
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Figure 3 Response-surface plots for astaxanthin loss as
function of significant (p < 0.05) interaction effects between
emulsion component concentrations.
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carotenoids, is very sensitive to light, oxygen and heat
[4,20]. The temperature rise during the emulsification-
evaporation process and possible exposure to light and
oxygen during processing are just some of the reasons
for the loss of astaxanthin in the final prepared samples.
The increasing astaxanthin loss at higher astaxanthin
concentrations (at high levels of emulsifier, Figure 3a)
could be the result of a relatively high probability for an
isomerization or self-reaction of astaxanthin due to of
the increased frequency of particle collision at high
astaxanthin concentrations. Decreasing the astaxanthin
loss by increasing the astaxanthin concentration (at low
concentrations of emulsifier, Figure 3a) or by increasing
the emulsifier and/or organic phase concentration (at
high levels of organic phase and/or emulsifier concentra-
tions, Figure 3b) may be related to the increased particle
sizes in these regions. In most cases, the astaxanthin loss
varied inversely with particle size; small particles possess
higher surface areas for exposure to light, oxygen or free
radicals than large particles and are thus more susceptible
to degradation or auto-oxidation [4,21]. The reduction in
astaxanthin loss with increasing emulsifier concentration
(at low concentrations of astaxanthin, Figure 3a) may be
because of the protective effect of the emulsifier (especially
the proteins and hydrocolloids) against lipid oxidation of
the active compound by altering the particle interface
properties. Sodium caseinate (the main component of the
emulsifier) has been reported to act as an efficient antioxi-
dant protein by absorbing onto the droplet surface, and it
exhibits a synergistic effect in combination with other
antioxidant compounds [22]. The individual optimization
predicted that astaxanthin nanodispersions prepared at
the concentrations of 0.15 wt % astaxanthin, 3.2 wt %
emulsifier and 30 wt % organic phase would produce the
nanodispersions with the least astaxanthin loss (2.7 wt %).

Optimization procedure for predicting the emulsion
composition concentrations to produce the most
desirable astaxanthin nanoemulsions

The astaxanthin nanodispersions with the smallest particle
size and PDI and the least astaxanthin loss would be con-
sidered the optimum product. After individual numerical
optimization for each response, multiple-response optimi-
zations were also performed to simultaneously determine
the optimum concentrations of emulsion components
leading to the most desirable response goals. The numer-
ical optimization showed that using 0.08 wt % astaxanthin,
2.5 wt % emulsifier and 11.5 wt % organic phase would
produce an astaxanthin nanodispersion with the optimum
physicochemical characteristics. Under these optimum
formulation conditions, the corresponding predicted re-
sponse values for average particle size, PDI and astaxanthin
loss percentage were 101.76 nm, 0.354 and 13.43 wt %
respectively.
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Verification of reduced model

The adequacy of the response-surface equations was
checked by comparing the experimental values and the fit-
ted values predicted by the response-regression models.
The experimental and predicted values are listed in
Table 1. No significant (p >0.05) differences were found
between these values. The agreement between the experi-
mental and predicted values confirmed the adequacy of
the corresponding response-surface models employed for
describing the variation of physicochemical properties as
functions of emulsion composition concentrations. For
confirmation, four astaxanthin nanodispersions were also
prepared according to the predicted optimum astaxanthin,
emulsifier and organic phase concentrations in tripli-
cate, and the particle size, PDI and astaxanthin loss of
the prepared nanodispersions were evaluated. Tukey’s
comparison test indicated insignificant differences be-
tween the experimental values and the predicted ones
(Table 3) and reconfirmed the suitability of the corre-
sponding models [10].

Stability evaluation of prepared optimum nanodispersion
during storage

A smaller particle size and consequently higher specific
surface area of an active compound generally lead to a
higher water dissolution rate and thus higher bioavail-
ability and cellular uptake, but particles in these small
size ranges (nanometers) must be stabilized physically
and chemically. Changes in the mean particle size of the
optimum astaxanthin nanodispersion were monitored
over three weeks of storage at 4°C to evaluate their phys-
ical stability. There was no significant change in the
mean particle size of the resulting optimum astaxanthin
nanodispersion over three weeks (Figure 4a). We con-
cluded that no coalescence occurred in the nanodispersion
and verified the physical stability of the resulting
nanodispersions. However, the significant (p <0.05) de-
crease in astaxanthin content of the nanodispersions, ei-
ther instantaneously after sample preparation or during
storage, showed their limited chemical stability. Figure 4b
shows the degradation profile of astaxanthin in storage at
4°C. The astaxanthin loss by the third week was 27.7%. It
is well known that astaxanthin is sensitive to light, oxygen
and heat, as other carotenoids [4]. Therefore, the presence
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of light, oxygen and heat contributed to the losses of
astaxanthin during both emulsification and evaporation
processes [2,4]. Furthermore, the occurrence of cavitation
within the homogenizer and the production of free radi-
cals during the nanodispersion preparation procedure
along with the high surface area of the nanoparticles for
exposure to this aqueous media containing free radicals
are other possible causes of the degradation during sample
preparation process and storage [2,23]. Addition of anti-
oxidant compounds such as tochopherols to organic phase
of nanodispersion systems and removing the oxygen or
singlet oxygen generators from sample preparation and
storage environment can decrease the astaxanthin degrad-
ation considerably [24].

Conclusion

In general, this study indicated that the formulation and
processing parameters had significant effects on the vari-
ation of the physicochemical properties of astaxanthin
nanodispersions. The central composite design was a use-
ful tool for optimizing the emulsion component concentra-
tions leading to astaxanthin nanodispersions with the most
desirable physicochemical properties. The high coefficients
of determination obtained (R®>0.940) for the regression
models by analysis of variance (ANOVA) confirmed the
validity of the empirical equations developed to describe
and predict the variation of the studied response variables.
The results indicated that the quadratic effect of emulsifier
concentration and its interaction effect with organic phase
concentration were significant in the variation of all three
studied responses. The optimization procedure indicated
that the overall optimum emulsion component concentra-
tions for producing the most desirable nanodispersion
were 0.08 wt % astaxanthin, 2.5 wt % emulsifier and 11.5
wt % organic phase. The experimental values were shown
to be in good agreement with the predicted values, thus in-
dicating the adequacy of the fitted models. This obtained
astaxanthin nanodispersion showed high physical stability
and relatively acceptable chemical stability.

Materials and methods

Materials

Astaxanthin (> 90%) was purchased from Kailu Ever
Brilliance Biotechnology Co., Ltd. (Beijing, China).

Table 3 Experimental and predicted values of chosen points (obtained from optimization procedures) for verification

of fitted reduced models

Astaxanthin Emulsifier Organic phase Particle size (nm) PDI Astaxanthin loss (%)

conc. (wt %) conc. (wt %) conc. (%) Yeu Yore Yerr Yore Yer Yore
1 0.09 0.081 20 90.0£76 86.51 0.203 + 0.009 0.215 4007 £2.13 42.59
2 0.02 0.20 38 992+£32 97.75 0.130 + 0.005 0.127 71.65£6.02 76.14
3 0.15 32 30 1387+43 140.835 0.555 + 0.008 0551 365+ 555 270
4 0.08 2.5 115 103.1+54 101.76 0.346 + 0.01 0.354 1397 +3.96 1343
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Figure 4 (a) Particle size distribution of obtained optimum astaxanthin nanodispersion after preparation and over 3 weeks of storage
at 4°C; (b) Changes in astaxanthin content for optimum obtained astaxanthin nanodispersions during storage at 4°C.

2 3

Polyoxyethylene sorbitan monolaurate (Tween 20), so-
dium azide, sodium caseinate, analytical and HPLC-
grade dichloromethane, methanol and acetonitrile were
provided by Fisher Scientific (Leicestershire, UK). Gum
Arabic was acquired from Merck (Darmstadt, Germany).
All chemicals were used without further purification.

Preparation of astaxanthin nanodispersions
Astaxanthin nanodispersions were prepared by the
emulsification-evaporation technique. Different concentrations

Table 4 Levels of independent variables established
according to the central composite design (CCD)

Variable

Independent variables

Independent variable levels

Low -a Center -a High

Concentration of astaxanthin (wt %, x;) 0.02 0.1 02 03 038
Concentration of emulsifier(wt %, x,) 02 1 2 3 38

Concentration of astaxanthin (wt 9%,xs) 2 10 20 30 38

of an emulsifier mixture (0.2-3.8 wt %, consisting of
29 wt % Tween 20, 65 wt % sodium caseinate and 6 wt
% gum Arabic) were dissolved in 0.05 M phosphate
buffer (pH 7) at 40°C containing 0.02 wt % sodium
azide. The emulsifiers were first dissolved in the aque-
ous phase under magnetic stirring for 5 h. Astaxanthin
was dissolved in dichloromethane at different concen-
trations (0.02-0.38 wt %) to compose the organic
phase, which was added to the aqueous phase at 2-38
wt %. The premix was homogenized using a conven-
tional homogenizer (Silverson, L4R, Buckinghamshire,
UK) at 5,000 rpm for 5 min. The resulting coarse emul-
sion then was passed twice through a high-pressure
homogenizer (APV, Crawley, UK) at 50 MPa. The
solvent was then removed from the fine emulsion
by rotary evaporation (Eyela NE-1001, Tokya Rika
Kikai Co. Ltd., Tokyo, Japan) at 25 kPa and 47°C. The
applied processing conditions were determined by
optimization in previous works [6,20]. The formation
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of astaxanthin particles took place as dichloromethane
diffused into through the aqueous phase and evapo-
rated at the water/air interface [25]. During the evapor-
ation process, only the dichloromethane was removed
from the samples. The experimental design matrix is
shown in Tables 1 and 4.

Analytical methods

Particle-size and polydispersity index (PDI)

Measurement of the mean particle sizes of the
nanodispersions and their polydispersity indices was
performed at 25°C using a dynamic light scattering par-
ticle size analyzer with a measuring range of 0.6—
6,000 nm (Malvern series ZEN 1600, Malvern Instru-
ments Ltd.,, Worcestershire, UK). All measurements
were performed on samples (1:10) diluted with deion-
ized water using disposable cuvettes to avoid multiple
scattering effects during the measurements. The final
particle diameter was calculated from an average of at
least three measurements [20].

Determination of astaxanthin content

Sample preparation for astaxanthin determination

To measure the astaxanthin concentrations of the
nanodispersions, 0.5 mL of sample was added to 2 mL
of a mixture of dichloromethane and methanol (50:50 v/v)
in an amber vial with a screw top. The vial was closed
tightly and agitated at 400 rpm for 30 min. The mixture
was centrifuged at 800 x g for 5 min using a KUBOTA
2010 centrifuge (Tokyo, Japan) at ambient temperature.
The extract was decanted. The extraction was repeated
two more times [26]. The volume of sample was brought
up to 10 mL by the addition of methanol. An aliquot of
sample was filtered using a syringe filter (Whatman
25 mm Nylon membrane Syringe Filter, pore size: 1 pm),
and 40 pL of filtrate was injected into the HPLC.

HPLC analysis

HPLC analysis was performed with an Agilent liquid
chromatography system (Agilent Technologies 1200
Series, Waldbroon, Germany), equipped with G13150
Diode Array Detector and a Nova-Pak® C18 ( 3.9 x
300 mm) Waters HPLC column, using an isocratic mo-
bile phase consisting of 85 v/v % methanol, 5 v/v %
dichloromethane, 5 v/v % acetonitrile and 5 v/v % water.
Detection and quantitative measurement of astaxanthin
was performed at 480 nm [20]. The calibration of peak
area versus astaxanthin concentration was linear in the
range of measured concentrations (R*=0.9899, n = 5).

Calculation of astaxanthin loss

The concentration of astaxanthin in each prepared sam-
ple was measured using HPLC after the evaporation
process, and the percentage of astaxanthin loss was
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calculated and considered as a third response variable
(Y3). The astaxanthin loss (%) was calculated as:

Astaxanthin loss (wt %) = [(C % -C)/Cx] x 100 (1)

where C is the astaxanthin content of the samples after
the evaporation step and C’ is the theoretical concentra-
tion of astaxanthin, which varied among the prepared
samples; it was calculated as:

Cx = xl/(IOO—xg) (2)

where x; and x3 are the corresponding astaxanthin and
organic phase concentrations, respectively, for each ex-
periment (Table 1). Thus, in the calculated percentage of
astaxanthin loss, all losses that occurred during the con-
ventional and high-pressure homogenization as well as
the evaporation steps were considered.

Experimental design

Most formulation studies involve the variation of one
factor at a time while keeping other factors constant.
Such an empirical method is acceptable only when the
factors are independent of one another. In factorial de-
signs, all factors can be varied simultaneously; thus, in-
teractions between the variables can be considered
through the factorial analysis. The simplest factorial de-
sign involves the use of two levels of each variable,
allowing only the estimation of linear relationships be-
tween independent variables. In situations where quad-
ratic relationships are important, more than two levels
should be used in factorial design. However, in these
cases, the number of experiments increases consider-
ably. An alternative for these situations is including
extra center and star points in a two-level factorial de-
sign, known as central composite design (CCD) [4].
Table 4 shows the three emulsion composition variables
investigated in this study and their levels. The center
point was repeated six times to evaluate the repeatabil-
ity of the method.

Statistical analysis
A response-surface analysis was conducted to study the
effect of astaxanthin concentration (x;), emulsifier con-
centration (x,) and organic phase concentration (x3) on
the average particle size (Y;), PDI (Y,) and astaxanthin
loss (Y3) of the prepared nanodispersions. The RSM was
developed for modeling purposes based on a set of
mathematical and statistical methods.

In this work, the independent and dependent variables
were fitted to a second-degree polynomial equation
(Eq. 3), where Y; is the estimated response, by is a
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constant, b; are the coefficients for each term, and x; are
the independent factors.

Y: = by + bix1 + baxy + b3xs + biax1xo
+ b13X1X3 + b23x2x3 + bnx% + bzzxg
+ b33x§ (3)

Since it is not possible to predict values when the
number of equation variables is greater than that of in-
dependent variables, the number of combinations of the
independent variables should be higher than 6 , because
according to Eq.3, the model contains 10 parameters
[27]. Thus, based on the CCD, 20 experiments including
8 cube points, 6 center points and 6 axial points were
performed. The distance of the axial points from the
central point is known as a. The value of « was calcu-
lated by the software and usually depends on the num-
ber of independent variables [4,28]. The quality of the
fitted models was evaluated by ANOVA, based on the
coefficients of determination (R?) obtained [4,20]. The
corresponding variables were considered more signifi-
cant if the absolute F values were larger and the p-values
were smaller than p < 0.05 [29]. The terms found statisti-
cally nonsignificant (p > 0.05) were dropped from the ini-
tial models, and the experimental data were refitted only
to the significant (p <0.05) independent variable effects
to obtain the final reduced model. It should be noted
that some variables were retained in the reduced model
despite their nonsignificance. For example, nonsignifi-
cant linear terms were kept in the model if a quadratic
or interaction term containing this variable was signifi-
cant (p < 0.05) [10]. Individual and multiple optimization
procedures were performed to predict the optimum
levels of the independent variables leading to the desired
response goals. Verification of models was done by com-
paring the experimental data with the values predicted
by the final reduced models, and the astaxanthin
nanodispersions recommended by single and multiple
optimization procedures were prepared and evaluated in
terms of the studied physicochemical characteristics. All
data were treated and analyzed with the aid of the
Minitab v.14 statistical package (Minitab Inc., PA, USA).
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