
Chemistry Central Journal

ss
Open AcceSoftware
Pybel: a Python wrapper for the OpenBabel cheminformatics
toolkit
Noel M O'Boyle*1,2, Chris Morley3 and Geoffrey R Hutchison4

Address: 1Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2
1EW, UK, 2Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, 3OpenBabel Development Team and 4Department
of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA

Email: Noel M O'Boyle* - baoilleach@gmail.com; Chris Morley - c.morley@gaseq.co.uk; Geoffrey R Hutchison - geoffh@pitt.edu

* Corresponding author

Abstract
Background: Scripting languages such as Python are ideally suited to common programming tasks
in cheminformatics such as data analysis and parsing information from files. However, for reasons
of efficiency, cheminformatics toolkits such as the OpenBabel toolkit are often implemented in
compiled languages such as C++. We describe Pybel, a Python module that provides access to the
OpenBabel toolkit.

Results: Pybel wraps the direct toolkit bindings to simplify common tasks such as reading and
writing molecular files and calculating fingerprints. Extensive use is made of Python iterators to
simplify loops such as that over all the molecules in a file. A Pybel Molecule can be easily
interconverted to an OpenBabel OBMol to access those methods or attributes not wrapped by
Pybel.

Conclusion: Pybel allows cheminformaticians to rapidly develop Python scripts that manipulate
chemical information. It is open source, available cross-platform, and offers the power of the
OpenBabel toolkit to Python programmers.

Background
Cheminformaticians often need to write once-off scripts
to create extract data from text files, prepare data for anal-
ysis or carry out simple statistics. Scripting languages such
as Perl, Python and Ruby are ideally suited to these day-
to-day tasks [1]. Such languages are, however, an order of
magnitude or more slower than compiled languages such
as C++. Since cheminformaticians regularly deal with
molecular files containing thousands of molecules and
many cheminformatics algorithms are computationally
expensive, cheminformatics toolkits are typically written
in compiled languages for performance.

OpenBabel is a C++ toolkit with extensive capabilities for
reading and writing molecular file formats (over 80 are
supported) as well as for manipulating molecular data [2].
Many standard chemistry algorithms are included, for
example, determination of the smallest set of smallest
rings, bond order perception, addition of hydrogens, and
assignment of Gasteiger charges. In relation to cheminfor-
matics, OpenBabel supports SMARTS searching [3],
molecular fingerprints [4] (both Daylight-type, and struc-
tural-key based), and includes group contribution
descriptors for LogP [5], polar surface area (PSA) [6] and
molar refractivity (MR) [5].

Published: 9 March 2008

Chemistry Central Journal 2008, 2:5 doi:10.1186/1752-153X-2-5

Received: 23 January 2008
Accepted: 9 March 2008

This article is available from: http://journal.chemistrycentral.com/content/2/1/5

© 2008 O'Boyle et al
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18328109
http://journal.chemistrycentral.com/content/2/1/5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
Of the current popular scripting languages, Python [7] is
the de-facto standard language for scripting in cheminfor-
matics. Several commercial cheminformatics toolkits have
interfaces in Python: OpenEye's closed-source successor
to OpenBabel, OEChem [8], is a C++ toolkit with inter-
faces in Python and Java; Rational Discovery's RDKit [9],
which is now open source, is a C++ cheminformatics
toolkit with a Python interface; the Daylight toolkit [10]
from Daylight Chemical Information Systems, written in
C, only has Java and C++ wrappers but PyDaylight [11],
available separately from Dalke Scientific, provides a
Python interface to the toolkit; the Cambios Molecular
Toolkit [12] from Cambios Consulting is a commercial
C++ toolkit with a Python interface. There are also toolkits
entirely implemented in Python: Frowns [13], an open
source cheminformatics toolkit by Brian Kelley, and PyBa-
bel [14], an open source toolkit included in the MGLTools
package from the Molecular Graphics Labs at the Scripps
Research Institute. Note that the latter is not related to the
OpenBabel project; rather its name derives from the fact
that its aim was to implement in Python some of the func-
tionality of Babel v1.6 [15], a command-line application
for converting file formats which is a predecessor of
OpenBabel.

Here we describe the implementation and application of
Pybel, a Python module that provides access to the
OpenBabel C++ library from the Python programming
language. Pybel builds on the basic Python bindings to
make it easier to carry out frequent tasks in cheminformat-
ics. It also aims to be as 'Pythonic' as possible; that is, to
adhere to Python language conventions and idioms, and
where possible to make use of Python language features
such as iterators. The result is a module that takes advan-
tage of Python's expressive syntax to allow cheminforma-
ticians to carry out tasks such as SMARTS matching, data
field manipulation and calculation of molecular finger-
prints in just a few lines of code.

Implementation
SWIG bindings
Python bindings to the OpenBabel toolkit were created
using SWIG [16]. SWIG (Simplified Wrapper and Inter-
face Generator) is a tool that automates the generation of
bindings to libraries written in C or C++. One of the
advantages of SWIG compared to other automated wrap-
ping methods such as Boost.Python [17] or SIP [18] is that
SWIG also supports the generation of bindings to several
other languages. For example, OpenBabel also uses SWIG
to generate bindings for Perl, Ruby and Java. An addi-
tional advantage is that SWIG will directly parse C or C++
header files while Boost.Python and SIP require each C++
class to be exposed manually. The input to SWIG is an
interface file containing a list of OpenBabel header files
for which to generate bindings. Using the signatures in the

header files, SWIG generates a C file which, when com-
piled and linked with the Python development libraries
and OpenBabel, creates a Python extension module,
openbabel. This can then be imported into a Python script
like any other Python module using the "import openbabel"
statement.

For a small number of C++ objects and functions, it was
necessary to add some convenience functions to facilitate
access from Python. Certain types of molecule files have
additional data present in addition to the connection
table. OpenBabel stores these data in subclasses of OBGe-
nericData such as OBPairData (for the data fields in mol-
ecule files such as MOL files and SDF files) and
OBUnitCell (for the data fields in CIF files). To access the
data it is necessary to 'downcast' an instance of OBGener-
icData to the specific subclass. For this reason, two con-
venience functions were added to the interface file, one to
cast OBGenericData to OBPairData, and one to cast to
OBUnitCell. Another convenience function was added to
convert a Python list to a C array of doubles, as this type
of input is required for a small number of OpenBabel
functions.

Iterators are an important feature of the OpenBabel C++
library. For example, OBAtomAtomIter allows the user to
easily iterate over the atoms attached to a particular atom,
and OBResidueIter is an iterator over the residues in a
molecule. The OpenBabel iterators use the dereference
operator to access the data, the increment operator to iter-
ate to the next element, and the boolean operator to test
whether any elements remain. Iterators are also a core fea-
ture of the Python language. However, the iterators used
by OpenBabel are not automatically converted into
Python iterators. To deal with this, Python iterator classes
that wrap the dereference, increment and boolean opera-
tors behind the scenes were added to the SWIG interface
file, so that Python statements such as "for
attached_obatom in OBAtomAtomIter(obatom)" work with-
out problem.

Pybel module
The SWIG bindings provide direct access from Python to
the C++ objects and functions in the OpenBabel API
(application programming interface). The purpose of the
Pybel module is to wrap these bindings to present a more
Pythonic interface to OpenBabel (Figure 1). This extra
level of abstraction is useful as Python programmers
expect Python libraries to behave in certain ways that a
C++ library does not. For example, in Python, attributes of
an object are often directly accessed whereas in C++ it is
typical to call Get/Set functions to access them. A C++
function returning a particular object might require a
pointer to an empty object as a parameter, whereas the
Python equivalent would not. Even something as simple
Page 2 of 7
(page number not for citation purposes)

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
as differences in the conventions for the case of letters
used in variable and method names is a problem, as it
makes it more likely for Python programmers to intro-
duce bugs in their code.

One of the key aims of Pybel was to reduce the amount of
code necessary to carry out common tasks. This is espe-
cially important for a scripting language where program-
ming is often done interactively at a command prompt. In
addition, as for any programming language, repeated
entry of code for routine and common tasks (so-called
'boilerplate code') is a common cause of errors in code.
Reading and writing molecule files is one of the most
common tasks for users of OpenBabel but requires several
lines of code if using the SWIG bindings. The following

code shows how to store each molecule in a multimole-
cule SDF file in a list called allmols:

import openbabel

allmols = []

obconversion = openbabel.OBConversion()

obconversion.SetInFormat("sdf")

obmol = openbabel.OBMol()

notatend = obconversion.ReadFile(obmol,
"inputfile.sdf")

while notatend:

allmols.append(obmol)

obmol = openbabel.OBMol()

notatend = obconversion.Read(obmol)

To replace this somewhat verbose code, Pybel provides a
readfile method that takes a file format and filename and
returns molecules using the 'yield' keyword. This changes
the method into a 'generator', a Python language feature
where a method behaves like an iterator. Iterators are a
major feature of the Python language which are used for
looping over collections of objects. In Pybel, we have used
iterators where possible to simplify access to the toolkit.
As a result, the equivalent to the preceding code is:

import pybel

allmols = [mol for mol in pybel.read
file("sdf", "inputfile.sdf")]

The benefits of iterator syntax are clear when dealing with
multimolecule files. For single molecule files, however,
the user needs to remember to explicitly request the itera-
tor to return the first and only molecule using the next
method:

mol = pybel.readfile("mol", "input
file.mol").next()

Pybel provides replacements for two of the main classes in
the OpenBabel library, OBMol and OBAtom. The follow-
ing discussion describes the Pybel Molecule class which
wraps an instance of OBMol, but the same design princi-
ples apply to the Pybel Atom class. Table 1 summarises
the attributes and methods of the Molecule object. By
wrapping the base class, Pybel can enhance the Molecule

The relationship between Python modules described in the text and the OpenBabel C++ libraryFigure 1
The relationship between Python modules described
in the text and the OpenBabel C++ library. Python
modules are shown in green; the C++ library is shown in
blue.
Page 3 of 7
(page number not for citation purposes)

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
object by providing (1) direct access to attributes rather
than through the use of Get methods, (2) additional
attributes of the object, and (3) additional methods that
act on the object.

(1) As mentioned earlier, it is typical in Python to access
attribute values directly rather than using Get/Set meth-
ods. With this in mind, the Molecule class adds attributes
such as energy, formula and molwt (among others) which
give the values returned by calling GetEnergy(), GetFor-
mula() and GetMolWt(), respectively on the underlying
OBMol (see Table 1 for the full list).

(2) One of the aims of Pybel is to simplify access to some
of the most common attributes. With this in mind, an
atoms attribute has been added which returns a list of the
atoms of the molecule as Pybel Atoms. Access to the data
fields associated with a molecule has been simplified by
creation of a MoleculeData object which is returned when
the data attribute of a Molecule is accessed. MoleculeData
presents a dictionary interface to the data fields of the
molecule. Accessing and updating these field is more con-
voluted if using the SWIG bindings. Compare the follow-
ing statements for accessing the "comment" field of the
variable mol, an OBMol:

Using the SWIG bindings

value = openbabel.toPairData(mol.GetData
["comment"]).GetValue()

Using Pybel

value = pybel.Molecule(mol).data ["com
ment"]

It should be noted that all of these attributes are calculated
on-the-fly rather than stored for future access as the under-
lying OBMol may have been modified.

(3) Four additional methods have been added to the
Pybel Molecule (Table 1). The first is a write method
which writes a representation of the Molecule to a file and
takes care of error handling. As with reading molecules
from files (see above), this method simplifies the proce-
dure significantly compared to using the SWIG bindings
directly. In addition, a calcfp method and a calcdesc
method have been added which calculate a binary finger-
print for the molecule, and some descriptor values, respec-
tively. In the OpenBabel library these are not methods of
the OBMol, but rather are loaded as plugins (by OBFin-
gerprint.FindFingerprint and OBDescriptor.FindType,
respectively) to which an OBMol is passed as input. The
__iter__ method is a special Python method that enables
iteration over an object; in the case of a Molecule, the
defined iterator loops over the Atoms of the Molecule.
This feature enables constructions such as "for atom in
mol" where mol is a Pybel Molecule.

SMARTS is a query language developed by Daylight
Chemical Information Systems for molecular substructure

Table 1: Attributes and methods supported by the Pybel Molecule object

Attribute Description*

OBMol The underlying OBMol object
atoms A list of Pybel Atoms
charge The total charge (GetTotalCharge)
data A MoleculeData object for access to data fields
dim The dimensionality of the coordinates (GetDimension)
energy The heat of formation (GetEnergy)
exactmass The mass calculated using isotopic abundance (GetExactMass)
flags The set of flags used internally by OpenBabel (GetFlags)
formula The stoichiometric formula (GetFormula)
mod The number of nested BeginModify() calls (Internal use) (GetMod)
molwt The standard molar mass (GetMolWt)
spin The total spin multiplicity (GetTotalSpinMultiplicity)
sssr The smallest set of smallest rings (GetSSSR)
title The title of the molecule (often the filename) (GetTitle)
unitcell Unit cell data (if present)

Method
write Write the molecule to a file or return it as a string
calcfp Return a molecular fingerprint as a Fingerprint object
calcdesc Return the values of the group contribution descriptors
__iter__ Enable iteration over the Atoms in the Molecule

*Where a Molecule attribute is a direct replacement for a 'Get' method of the underlying OBMol, the name of the method is given in parentheses.
Page 4 of 7
(page number not for citation purposes)

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
searching [3]. As implemented in the OpenBabel toolkit,
finding matches of a particular substructure in a particular
molecule is a four step process that involves creating an
instance of OBSmartsPattern, initialising it with a
SMARTS pattern, searching for a match, and finally
retrieving the result:

obsmarts = openbabel.OBSmartsPattern()

obsmarts.Init("[#6] [#6]")

obsmarts.Match(obmol)

results = obsmarts.GetUMapList()

Since a SMARTS query can be thought of as a regular
expression for molecules, in Pybel we decided to wrap the
SMARTS functionality in an analogous way to Python's
regular expression module, re. With these changes, the
same process takes only two steps, an initialisation step
and a search step:

smarts = pybel.Smarts("[#6] [#6]")

results = smarts.findall(pybelmol)

Pybel was not written to replace the SWIG bindings but
rather to make it simpler to perform common tasks. As a
result, Pybel does not attempt to wrap every single
method and class in the OpenBabel library. Because of
this, a user may often want to interconvert between an
OBMol and a Molecule, or an OBAtom and an Atom. This
is quite a straightforward process. A Pybel Molecule can be
created by passing an OBMol to the Molecule constructor.
In the following example an OBMol is created using the
SWIG bindings and then written to a file using Pybel:

obmol = openbabel.OBMol()

a = obmol.NewAtom()

a.SetAtomicNum(6)

a.SetVector(0.0, 1.0, 2.0) # Set coordi
nates

b = obmol.NewAtom()

obmol.AddBond(1, 2, 1) # Single bond from
Atom 1 to Atom 2

pybel.Molecule(obmol).write("mol", "out
putfile.mol")

The OBMol wrapped by a Pybel Molecule can be accessed
through the OBMol attribute. This makes it easy to call a
method not wrapped by Pybel, such as OBMol.NumRotors,
which returns the number of rotatable bonds in a mole-
cule:

mol = pybel.readfile("mol", "input
file.mol").next()

numrotors = mol.OBMol.NumRotors()

Documentation and Testing
To minimise programming errors, programs written
dynamically-typed languages such as Python should be
tested comprehensively. Pybel has 100% code coverage in
terms of unit tests, as measured by Ned Batchelder's cov-
erage.py [19]. It also has several doctests, short snippets of
Python code included in documentation strings which
serve as both examples of usage and as unit tests.

The Pybel API is fully documented with docstrings. These
can be accessed in the usual way with the help() com-
mand at the interactive Python prompt after importing
Pybel: for example, "help(pybel.Molecule)". In addition, the
OpenBabel Python web page [20] contains a complete
description of how to use the SWIG bindings and the
Pybel API. The webpage also contains links to HTML ver-
sions of the OpenBabel API documentation and Pybel API
documentation. The latter is included in Additional File 1.

Results and Discussion
The principle aim of Pybel is to make it simpler to use the
OpenBabel toolkit to carry out common tasks in chem-
informatics. These common tasks include reading and
writing molecule files, accessing data fields of a molecule,
computing and comparing molecular fingerprints and
SMARTS matching. Here we present some examples that
illustrate how Pybel may be used to carry out common
cheminformatics tasks.

Removal of duplicate molecules
When merging different datasets or as a final step in pre-
processing, it may be necessary to identify and remove
duplicate molecules. In the following example, only the
unique molecules in the multimolecule SDF file "input-
file.sdf" will be written to "uniquemols.sdf". Here we will
assume that a unique InChI string (IUPAC International
Chemical Identifier) indicates a unique molecule. A simi-
lar procedure could be performed using the OpenBabel
canonical SMILES format, by replacing "inchi" with "can"
in the following:

import pybel

inchis = []
Page 5 of 7
(page number not for citation purposes)

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
output = pybel.Outputfile("sdf",
"uniquemols.sdf")

for mol in pybel.readfile("sdf", "input
file.sdf"):

inchi = mol.write("inchi")

if inchi not in inchis:

output.write(mol)

inchis.append(inchi)

output.close()

Selection of similar molecules
Another common task in cheminformatics is the selection
of a set of molecules of similar structure to a target mole-
cule. Here we will assume that structural similarity is indi-
cated by a Tanimoto coefficient [21] of at least 0.7 with
respect to Daylight-type (that is, based on hashed paths
through the molecular graph) fingerprints. Note that
Pybel redefines the | operator (bitwise OR) for Fingerprint
objects as the Tanimoto coefficient:

import pybel

targetmol = pybel.readfile("sdf", "target
mol.sdf").next()

targetfp = targetmol.calcfp()

output = pybel.Outputfile("sdf", "similar
mols.sdf")

for mol in pybel.readfile("sdf", "input
file.sdf"):

fp = mol.calcfp()

if fp | targetfp >= 0.7:

output.write(mol)

output.close()

Applying a Rule of Fives filter
In an influential paper, Lipinski et al. [22] performed an
analysis of drug compounds that reached Phase II clinical
trials and found that they tended to occupy a certain range
of values for molecular weight, LogP, and number of
hydrogen bond donors and acceptors. Based on this, they
proposed a rule with four criteria to identify molecules
that might have poor absorption or permeation proper-

ties. This is the Lipinski Rule of Fives, so-called as the
numbers involved are all multiples of five. The following
example shows how to filter a database to identify only
those molecules that pass all four of the Lipinski criteria.
The values of the Lipinski descriptors are also added to the
output file as data fields. Note that whereas molecular
weight is directly available as an attribute of a Molecule,
and LogP is available as one of the three group contribu-
tion descriptors calculated by OpenBabel, we need to use
SMARTS pattern matching to identify the number of
hydrogen bond donors and acceptors. The SMARTS pat-
terns used here correspond to the definitions of hydrogen
bond donor and acceptor used by Lipinski:

import pybel

HBD = pybel.Smarts("[#7,#8;!H0]")

HBA = pybel.Smarts("[#7,#8]")

def lipinski(mol):

"""Return the values of the Lipinski
descriptors."""

desc = {'molwt': mol.molwt,

'HBD': len(HBD.findall(mol)),

'HBA': len(HBA.findall(mol)),

'LogP': mol.calcdesc(['LogP'])
['LogP']}

return desc

passes_all_rules = lambda desc: (desc
['molwt'] <= 500 and

desc ['HBD'] <= 5 and desc
['HBA'] <= 10 and

desc ['LogP'] <= 5)

if __name__=="__main__":

output = pybel.Outputfile("sdf", "pas
sLipinski.sdf")

for mol in pybel.readfile("sdf",
"inputfile.sdf"):

descriptors = lipinski(mol)

if passes_all_rules(descriptors):
Page 6 of 7
(page number not for citation purposes)

Chemistry Central Journal 2008, 2:5 http://journal.chemistrycentral.com/content/2/1/5
mol.data.update(descriptors)

output.write(mol)

output.close()

Future work
The future development of Pybel is closely linked to any
changes and improvements to OpenBabel. With each new
release of the OpenBabel API, the SWIG bindings will be
updated to include any additional functionality. How-
ever, additions to the Pybel API will only occur if they sim-
plify access to new features of the OpenBabel toolkit of
general use to cheminformaticians. In general, the Pybel
API can be considered stable, and an effort will be made
to ensure that future changes will be backwards compati-
ble.

Conclusion
Pybel provides a high-level Python interface to the widely-
used OpenBabel C++ toolkit. This combination of a high
performance cheminformatics toolkit and an expressive
scripting language makes it easy for cheminformaticians
to rapidly and efficiently write scripts to manipulate
molecular data.

Pybel is freely available from the OpenBabel web site2

both as part of the OpenBabel source distribution and for
Windows as an executable installer. Compiled versions
are also available as packages in some Linux distributions
(openbabel-python in Fedora, for example).

Availability and Requirements
Project name: Pybel

Project home page: http://openbabel.sf.net/wiki/Python

Operating system(s): Platform independent

Programming language: Python

Other requirements: OpenBabel

License: GNU GPL

Any restrictions to use by non-academics: None

Authors' contributions
GRH is the lead developer of OpenBabel and created the
SWIG bindings. NMOB developed Pybel, and extended
the SWIG interface file. CM compiled the SWIG bindings
on Windows and added convenience functions to the
OpenBabel API to facilitate access from scripting lan-
guages. All authors read and approved the final manu-
script.

Additional material

Acknowledgements
The idea for the Pybel module was inspired by Andrew Dalke's work on
PyDaylight [11]. We thank the anonymous reviewers for their helpful com-
ments.

References
1. Ousterhout JK: Scripting: Higher Level Programming for the

21st Century. [http://home.pacbell.net/ouster/scripting.html].
2. OpenBabel v.2.1.1 [http://openbabel.sf.net]
3. SMARTS – A Language for Describing Molecular Patterns

[http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html]
4. Flower DR: On the properties of bit string-based measures of

chemical similarity. J Chem Inf Comput Sci 1998, 38:379-386.
5. Wildman SA, Crippen GM: Prediction of physicochemical

parameters by atomic contributions. J Chem Inf Comput Sci
1999, 39:868-873.

6. Ertl P, Rohde B, Selzer P: Fast calculation of molecular polar
surface area as a sum of fragment-based contributions and
its application to the prediction of drug transport properties.
J Med Chem 2000, 43:3714-3717.

7. Python [http://www.python.org]
8. OEChem: OpenEye Scientific Software: Santa Fe, NM. .
9. RDKit [http://www.rdkit.org]
10. Daylight Toolkit: Daylight Chemical Information Systems,

Inc.: Aliso Viejo, CA. .
11. PyDaylight: Dalke Scientific Software, LLC: Santa Fe, NM. .
12. Cambios Molecular Toolkit: Cambios Computing, LLC: Palo

Alto, CA. .
13. Frowns [http://frowns.sf.net]
14. PyBabel in MGLTools [http://mgltools.scripps.edu]
15. Babel v.1.6 [http://smog.com/chem/babel/]
16. SWIG v.1.3.31 [http://www.swig.org]
17. Boost.Python [http://www.boost.org/libs/python/doc/]
18. SIP – A Tool for Generating Python Bindings for C and C++

Libraries [http://www.riverbankcomputing.co.uk/sip/]
19. coverage.py [http://nedbatchelder.com/code/modules/cover

age.html]
20. OpenBabel Python [http://openbabel.sourceforge.net/wiki/

Python]
21. Jaccard P: La distribution de la flore dans la zone alpine. Rev

Gen Sci Pures Appl 1907, 18:961-967.
22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental

and computational approaches to estimate solubility and
permeability in drug discovery and development settings.
Adv Drug Del Rev 1997, 23:3-25.

Additional file 1
Pybel API. The HTML documentation of the Pybel API (application pro-
gramming interface).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-2-5-S1.zip]
Page 7 of 7
(page number not for citation purposes)

http://openbabel.sf.net/wiki/Python
http://www.biomedcentral.com/content/supplementary/1752-153X-2-5-S1.zip
http://home.pacbell.net/ouster/scripting.html
http://openbabel.sf.net
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11020286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11020286
http://www.python.org
http://www.rdkit.org
http://frowns.sf.net
http://mgltools.scripps.edu
http://smog.com/chem/babel/
http://www.swig.org
http://www.boost.org/libs/python/doc/
http://www.riverbankcomputing.co.uk/sip/
http://nedbatchelder.com/code/modules/coverage.html
http://nedbatchelder.com/code/modules/coverage.html
http://openbabel.sourceforge.net/wiki/Python
http://openbabel.sourceforge.net/wiki/Python

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	SWIG bindings
	Pybel module
	Documentation and Testing

	Results and Discussion
	Removal of duplicate molecules
	Selection of similar molecules
	Applying a Rule of Fives filter
	Future work

	Conclusion
	Availability and Requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

